

NTT DATA

IoC LIGHT

 \sim Lifecycle of Indicators: Gathering, Handling, and Termination \sim

Jan 21st, 2025

Yusuke Nakajima | NTTDATA-CERT | Cloud & Infrastructure Group | NTT DATA Group Corporation

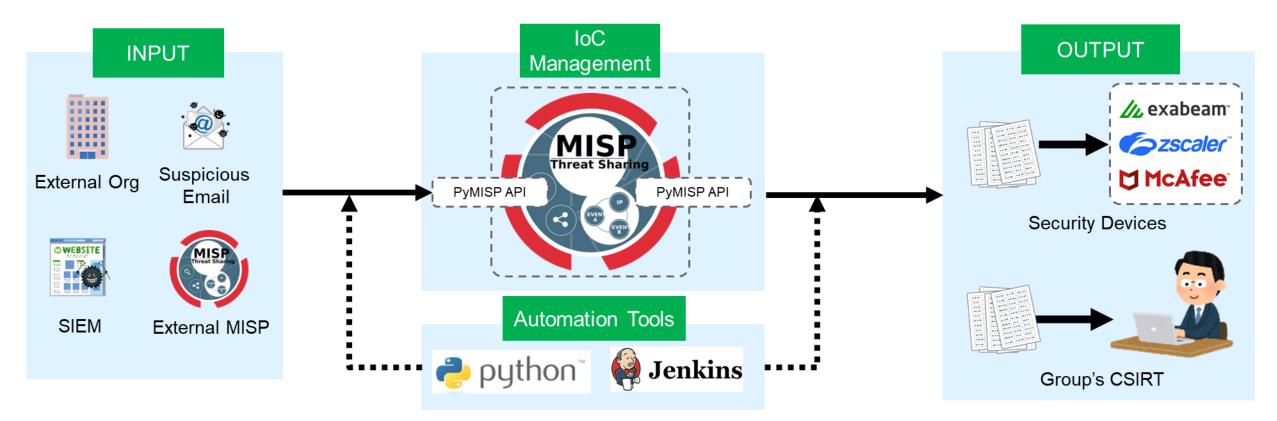
Agenda

- 1. whoami
- 2. Introduction
- 3. Two Challenges in IoCs Management and Approaches
- 4. IoCs Prioritization Criteria
- 5. IoCs Lifecycle Model
- 6. Conclusion

whoami

TLP:CLEAR

- Name: Yusuke Nakajima
- Background:
 - ✓ Joined NTT DATA Group in 2019, focused on providing image processing and NLP solutions
 - Transferred to NTTDATA-CERT in April 2023, handling incident response, IoC operations, and AI-driven CSIRT improvements
 - Interested in offensive security, including C2 framework development, open-source vulnerability research, and bug bounty programs


intelligence platform.

Introduction

•

• Streamlined IoCs handling and quickly integrated new IoC sources. During the Emotet outbreak, this approach allowed us to prevent incidents proactively.

Performed real-time IoC collection, processing, and distribution using MISP as our core threat

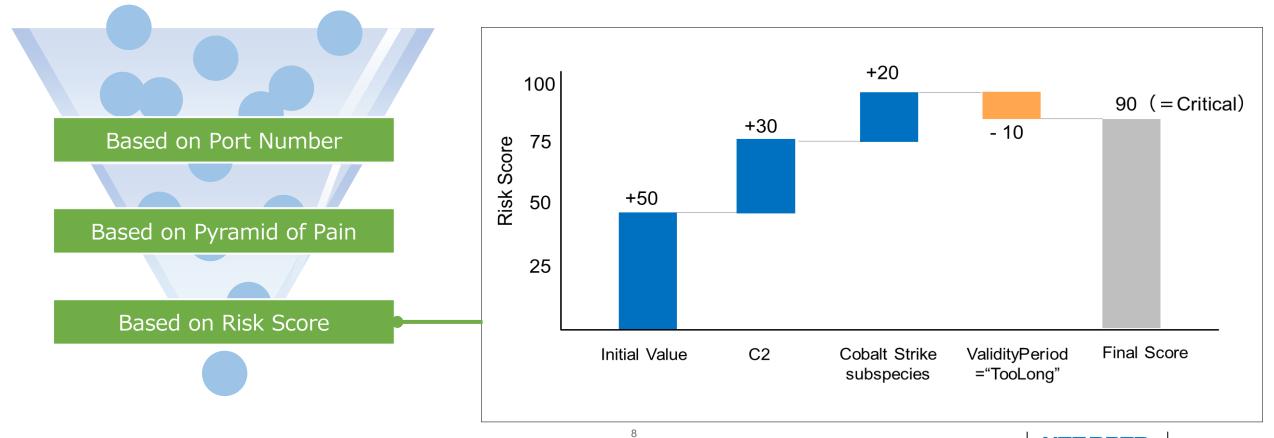
Two Challenges in IoC Management and Our Approaches

- Threat trends evolve daily, requiring regular integration of new IoCs.
- Identified two key challenges in IoC management during this process.
 - IoC registration limits on security devices pose a significant challenge, as failing to filter out low-risk or outdated IoCs can prevent the timely registration of high-risk, emerging threats, leaving critical gaps in defense (IoC Capacity Constraints)
 - 2. Retaining outdated IoCs increases false positives, leading to alert fatigue and operational inefficiencies in SOC teams (False Positive Fatigue)

Two Challenges in IoC Management and Our Approaches

• Our approaches to address these challenges are as follows:

No	Challenges	Approaches			
1	IoC Capacity Constraints	 IoCs Prioritization Criteria Analyze IoCs to identify threats relevant to our organization Categorize IoCs into four priority levels and collect only high- priority IoCs 			
		 IoCs Lifecycle Model Develop removal criteria based on quantitative metrics, not 			
2	False Positive Fatigue	 qualitative metrics Ensuring low-risk loCs are systematically deleted from security devices such as FW, SIEM and so on 			



© 2024 NTT DATA Group Corporation

Overview

- Filtered a large volume of IoCs based on three key criteria: port number, Pyramid of Pain, and custom risk score.
- The Risk Score represents the **sophistication level of the attacker associated with the loCs**

TLP:CLEAR

TLP:CLEAR

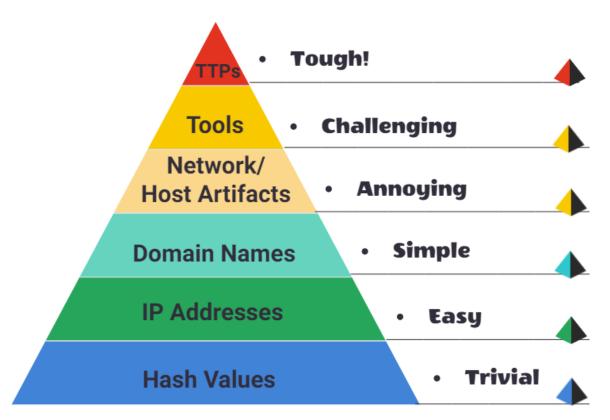
Analysis of Our Security Environment (1/4)

- Security environment aligned with the Cyber Security Framework (CSF).
- External red team assessments confirmed that breaching our environment is challenging.
- Focus shifted to collecting IoCs related to advanced attackers, given the low risk from unsophisticated threats.

TLP:CLEAR

Analysis of Our Security Environment (2/4)

- Established a 24/7 SOC team focused on EDR solutions.
- Acknowledged limitations of EDR in detecting C2 communications and data exfiltration.
- Prioritized C2 detection as a key focus in our security strategy.


	EDR1		EDR2		EDR3		AV		Detected
Abuse vector	Cobalt	Sliver	Cobalt	Sliver	Cobalt	Sliver	Cobalt	Sliver	
C&C channel									
Open SOCKS tunnel, e.g. for Network scanning									
Data exfiltration									
KeyLogger									

Source: D1T1 - EDR Evasion Primer for Red Teamers - Karsten Nohl & Jorge Gimenez.pdf

Analysis of Our Security Environment (3/4)

- Firewall restricts traffic to ports 80 and 443, blocking all other ports.
- Prioritizing domain-based loCs over IP-based loCs, as they cause more disruption to attackers (Pyramid of Pain model).
 The Pyramid of Pain

Source: https://www.csnp.org/post/tryhackme-pyramid-of-pain-room

© 2024 NTT DATA Group Corporation

NTT DATA

TLP:CLEAR

Analysis of Our Security Environment (4/4)

- In summary, the following four elements form the key requirements for IoC filtering:
 - 1. Associated with advanced attackers
 - 2. Related to C2 communications and data exfiltration
 - 3. Limited to ports 80 and 443
 - 4. Target domains instead of IP addresses

TLP:CLEAR

Analysis of Our Security Environment (4/4)

• In summary, the following four elements form the key requirements for IoC filtering:

1. Associated with advanced attackers

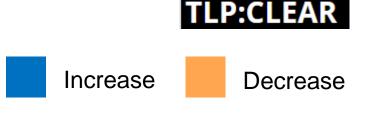
- 2. Related to C2 communications a
- 3. Limited to ports 80 and 443
- 4. Target Domains Instead of IP Add

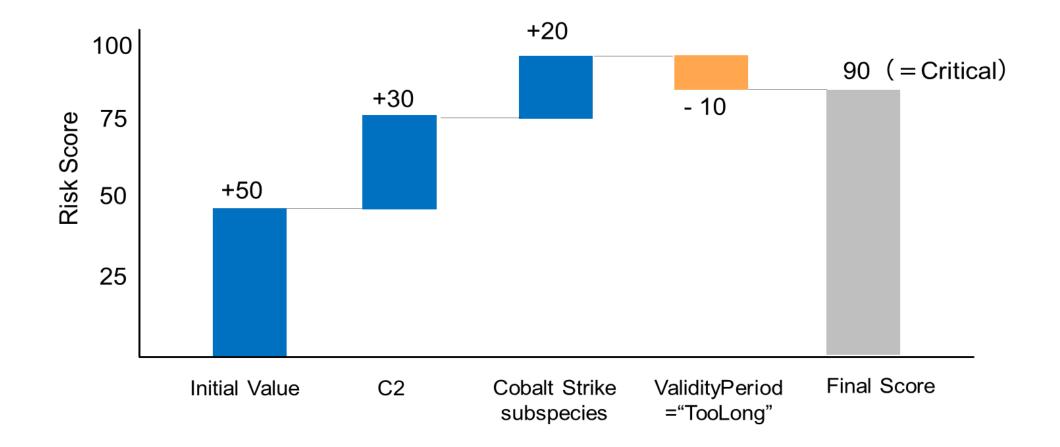
How to Identify IoCs associated with advanced attackers?

How to Identify IoCs associated with advanced attackers?

How to Identify IoCs associated with advanced attackers?

Risk Score Calculation Logic By NTTDATA-CERT


Risk Score Calculation Logic By NTTDATA-CERT


- Integrated the results of our data analysis with the requirement to prioritize C2-related IoCs to develop a risk score calculation logic.
- The IoC risk is evaluated using a four-level scoring system:
 - ✓ 0 30 points: Low
 - ✓ 40 60 points: Medium
 - ✓ 70 80 points: High
 - ✓ 90 100 points: Critical

Risk Score Calculation Logic By NTTDATA-CERT

• Examples of "Critical" Risk Score is as follows:

Real-World Example

- Identified ThreatFox as a reliable information source with sufficient context.
- Registers around 500 loCs daily, risking capacity overload of security devices.
- Manual verification of each IoC's impact on operations is impractical.

Date (UTC) ↑↓	IOC îl	Malware îl	Tags ↑↓	Reporter 1
2025-01-06 06:56	103.15.186.10:443	ि∰ Brute Ratel C4	as2519 BruteRatel c2 censys	skocherhan 📰
2025-01-06 06:45	38.49.56.2:56004	兼 AsyncRAT	asyncrat	™ abuse_ch
2025-01-06 06:45	38.49.56.2:56005	兼 AsyncRAT	asyncrat	™sussi∾ abuse_ch
2025-01-06 06:45	38.49.56.2:56003	兼 AsyncRAT	asyncrat	™ abuse_ch
2025-01-06 06:35	185.194.236.52:443	兼 DeimosC2	AS48314 C2 Deimos shodan	skocherhan 📰

Source: ThreatFox | Browse IOCs

TLP:CLEAR

Real-World Example

- Applied IoC Prioritization Criteria to IoC collected from ThreatFox.
- Filtering "High" and "Critical" risk IoCs reduced daily collection to ~80 IoCs.
- Further focusing on domain-based IoCs reduced it to ~50 IoCs per day.
- Achieved a 90% reduction in collected IoCs, prioritizing those most relevant to our environment.

No	Items	Total	Low	Medium	High	Critical
1	Total Count (5 Days)	1,420	459	548	398	15
2	After Applying Domain Filter	-	-	-	261	8
3	Daily Average (Rounded Up)	284	-	-	52	2

※ Port-Based Filtering Already Applied

TLP:CLEA

Investigation and Interview Findings For IoCs Lifecycle Model

- Investigated essential information for building an IoC lifecycle model.
- Conducted interviews to identify reasons for retaining outdated IoCs in operations.
- Key findings from the investigation and interview are summarized below.

No	Items	Findings	Necessary information			
1	Investigation	Research focused on past FIRST Conference presentations, with limited information on IoC lifecycle management.	IoCs Lifecycle Characteristics in Our			
2	Interview	Found some organizations remove IoCs on fixed cycles (e.g., 3 or 6 months) without clear justification.	Environment			
3		SOC team raised concerns about IoC removal, fearing it may result in missed threats, causing hesitation to adopt removal processes.	Data-Driven Removal Criteria			

Data-Driven Removal Criteria

Agreement on Lifecycle Model Operations with Stakeholders

- Consulted with SOC team and internal experts on implementing the Lifecycle Model.
- Approved for operational use after confirming that IoC removal risks were sufficiently mitigated.
- Lifecycle Model expected to be fully operational by the end of FY2024.

Conclusion

Conclusion

- **TLP:CLEAR**
- Developed the **IoCs Prioritization Criteria** and **Lifecycle Model** to tackle two common challenges:
 - IoC registration limits on security devices pose a significant challenge, as failing to filter out low-risk or outdated IoCs can prevent the timely registration of high-risk, emerging threats, leaving critical gaps in defense (IoC Capacity Constraints)
 - 2. Retaining outdated IoCs increases false positives, **leading to alert fatigue and operational inefficiencies in SOC teams (False Positive Fatigue)**
- Ensured prioritization of high-risk, relevant IoCs while systematically removing outdated, low-risk ones to mitigate capacity issues and alert fatigue.

