
Unmasking HiddenFace
MirrorFace’s most complex backdoor yet

Dominik Breitenbacher
Malware Researcher

Unmasking NOOPDOOR
MirrorFace’s most complex backdoor yet

Dominik Breitenbacher
Malware Researcher

Dominik Breitenbacher
• Malware researcher @ ESET since 2019

• Research focus

• MirrorFace – LODEINFO

• Kimsuky

dominik.breitenbacher@eset.com @dbreitenbacher dbreitenbacher

Agenda

MirrorFace overview

HiddenFace (NOOPDOOR)

▪ Introduction

▪ Execution chain

▪ Technical details

MirrorFace

MirrorFace

China-aligned threat actor

Active at least since 2019

▪ Activity often attributed to APT10

LODEINFO malware unique for the group

Exclusively targeting Japanese entities (?)

Victimology

Media Defense-related
companies

Think tanks

Political entities Academic institutes

HiddenFace
(NOOPDOOR)

HiddenFace

shellcode modular evasive

active and passive
communication

data categorization
system

domain generation
algorithm

Overall complexity and versatility surpasses LODEINFO

Victimology

Media Defense-related
companies

Think tanks

Political entities Academic institutes

How we discovered HiddenFace

August 2023

Japanese research institute

Exploited a vulnerability in FortiOS/FortiProxy

→ NOT via spearphishing

LODEINFO deployed

→ MirrorFace

HiddenFace deployed

Execution Chain

Execution chain - Installation

Scheduled task

Example: automatic-device-check or createobject

Execution chain - Installation

Scheduled task

launches

MSBuild

Malicious XML file

uses as argument

Example: diskmgmt.config, BrowserSettingSync.xml, or BluetoothDesktopHandlers.xml

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file

builds and
executes

uses as argument

FaceXInjector = NOOPLDR

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

Example: ActivationManager.tlb, LaunchWinApp.dat, or Windows.Devices.Custom.dat

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

SHA-256(AES(payload)) AES material AES(payload)File content:

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

SHA-256(AES(payload)) AES material AES(payload)File content:

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

AES(payload)SHA-256()

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

AES(payload)= SHA-256() ?SHA-256(AES(payload))

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

AES(payload)= SHA-256()SHA-256(AES(payload))

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

SHA-256(AES(payload)) AES material AES(payload)

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

AES materialSHA-384()

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

builds and
executes

uses as argument reads

AES(payload)Decrypt()

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

Machine-specific encrypted
HiddenFace

builds and
executes

uses as argument reads

creates

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

Machine-specific encrypted
HiddenFace

builds and
executes

uses as argument reads

creates

HKLM\Software\Microsoft\SQMClient\MachineId + hostname

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

Machine-specific encrypted
HiddenFace

builds and
executes

uses as argument reads

creates

SHA-384(HKLM\Software\Microsoft\SQMClient\MachineId + hostname)

Execution chain - Installation

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Encrypted
HiddenFace

Machine-specific encrypted
HiddenFace

Registry key with machine-
specific encrypted

HiddenFace

builds and
executes

uses as argument reads

creates

creates

is stored into

HKCU|HKLM\Software\License\{<16 hex characters>}

Execution chain - Injection

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file

builds and
executes

uses as argument

Execution chain - Injection

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Registry key with machine-
specific encrypted

HiddenFace

builds and
executes

uses as argument reads

Execution chain - Injection

Scheduled task

launches

MSBuild FaceXInjector

Malicious XML file Registry key with machine-
specific encrypted

HiddenFace

Defined Windows utility

builds and
executes

uses as argument reads

Example: perfmon.exe, wermgr.exe, or powercfg.exe

injects payload
into

is injected into

Startup

Startup

Dynamically resolves Windows APIs

Performs few defensive actions

▪ Removes API resolution code
→ Memory dump is malformed

▪ Restricts DLL loading to Microsoft-signed ones

▪ Sleeps randomly in between 30 and 60 seconds
→ Likely to avoid behavioral analysis by sandbox or security solutions

▪ Periodically checks running processes against a list of blacklisted applications

• Debuggers, process monitors, network analysis tools …

Startup

Creates mutex
→ Only one instance at a time

Loads external modules

Initializes internal framework

Starts network communications

Modular System

Modular system

Core feature of HiddenFace

Module:
Built-in functions or shellcode labeled by ID numbers

HiddenFace contains several built-in modules

External modules are loaded from a file

Additional modules can be sent by an operator

▪ Internal framework provided to a module received from a C&C server

External Modules

External modules

Stored in a file – AES-256-CBC-encrypted

User-specific filename

User-specific AES key and IV

Algorithmically determined

▪ Hostname and username is used

Note: Most of the assets that are usually hardcoded in malware (e.g., encryption keys, filenames),
are generated by HiddenFace.

External modules – Module Entry

Name Description

Type Module type (immediate, specific minute, etc.)

ID ID to identify the module

Tag (Optional) Additional label for the module

Time Describes a specific time or a period; used for scheduled execution

Shellcode / Parameters Contains either the module’s shellcode or parameters for a built-in module

External modules – Execution

Each module is executed based on its type

Type Description

Immediate Immediately and only once

Specific minute Specified minute every hour

Specific time Specified time every day

Periodic Every X minutes

Process monitor periodic X minutes after the last check for running processes

Internal Framework

Internal framework

Provided to every module received from the C&C server

Features:

▪ Access and modify external modules

▪ Utilize internal memory storage

▪ List running modules

▪ Changes to the framework itself

Allows to create a tailored environment with needed capabilities

Internal framework

Function ID Description

CCA8EB22C9E23C5D0577FC1F03060A5E Add framework function

3D75B9B060499764C13527149E89D8DC Remove framework function

CF05E89B7EAF28FE0DBF3B771B6C07B7 Write to memory storage

9BB2D76EDA1355D875D1D53DEEAA85B9 Read from memory storage

AC636E53FA3EC973F0E9535C8358C3E9 Remove data from memory storage

AC2BC61134888753316C1AC63DE465FE Read external modules file

50515EF4F20DAA90B575DFFEAB4A97C0 Add module to external modules file

B5F39B21F0CC65CB1E3C75C6BFB7AB25
Write data to external modules file
If no data is provided → file is deleted

1AA52A58C2C7B8E0079FF255D7294E70 Return list of running modules

Lookup function is used to obtain and execute desired function

Active Communication

Active communication

Actively connects to a C&C server

Works in sessions

Hard-coded list of C&C URLs (templates)

Uses domain generation algorithm (DGA)

Uses custom protocol over TCP (on port 443)

Active communication – DGA

http://$n[].tw8sl.com:443/#180

Symbol Description

$n Variable to replace with a generated string (e.g., sofvgckcmyixg)

[] Use hostname in the algorithm → Creates unique domain

#<num> Increase domain’s lifespan to <num> days

TrendMicro’s example:

http://$d.hopto.org:443

Note: Some of the domains are under direct MirrorFace control.

Active communication – Establishing a session

All messages exchanged are encrypted

First messages are RSA-2048 encrypted

▪ To send collected information

▪ To exchange key materials for a
symmetric encryption cipher

Symmetric encryption cipher is used until
the end of the session

Cipher randomly selected by HiddenFace

▪ DES, 3DES, two-key 3DES

▪ AES-CBC (128/192/256)

▪ RC2, RC4

K
ey

 n
eg

o
ti

at
io

n

RSA(secret – part I & additional info)

RSA(secret – part II)

Selected cipher(SHA-1 (secret))

RSA(secret – part III & selected cipher & additional info)

HiddenFace C&C server

Active communication – Commands handling

Commands executed by modules

Server sends module ID and necessary
data

Module ID not found
→ Additional temporary module
→ Access to internal framework

K
ey

 n
eg

o
ti

at
io

n
R

eq
u

es
ti

n
g

co
m

m
an

d
s

⋮

RSA(secret – part I & additional info)

RSA(secret – part II)

Selected cipher(SHA-1 (secret))

Selected cipher(command)

RSA(secret – part III & selected cipher & additional info)

Selected cipher(command request)

Selected cipher(result)

HiddenFace C&C server

Active communication – Commands

Note: msra.tlb contains credentials collected by MSRAStealer – MirrorFace’s
publicly undescribed stealer.

Function ID Description

3B27D4EEFBC6137C23BD612DC7C4A817 Create a process

9AA5BB92E9D1CD212EFB0A5E9149B7E5 Write to a file

3C7660B04EE979FDC29CD7BBFDD05F23 Exfiltrate a file

12E2FC6C22B38788D8C1CC2768BD2C76
Read content from the file named
%SystemRoot%\System32\msra.tlb

2D3D5C19A771A3606019C8ED1CD47FB5 Timestomp directory content

MSRAStealer

Passive credentials stealer

Upon deployment registered as password filter and authentication package

Password filter

▪ Legitimate use: Enforce password policy

▪ MSRAStealer: collects credentials on a password change

Authentication package

▪ Legitimate use: Analyze logon data

▪ MSRAStealer: collects credentials on user’s logon

Collected credentials are dumped into msra.tlb – AES-256-CBC encrypted

HiddenFace used to exfiltrate the credentials

Passive Communication

Passive communication

Hard-coded list of ports to listen on (e.g., 47000)

Windows firewall reconfigured to allow communication

Communication AES-128-CBC encrypted

AES key and IV generated on:
<year><hour (utc)><day><month>

SHA-256 hash = AES key

SHA-1 hash = AES IV

Passive communication – Commands

Note: Execute shellcode – Shellcode is turned into a module first. Not added to the list of
available modules and not provided with the access to the internal framework.

Command ID Description

0x0BE9 Keep-Alive

0x2359 Create a process

0x235A Exfiltrate a file

0x235B Write to a file

0x235C Set working directory

0x235D Execute shellcode

Data Structuring System

Data structuring system

HiddenFace uses system to structure data

For communication, but also internally

Every structured data blob consists of:

▪ Header

▪ Metadata

▪ Actual data

Data structuring system

Header

Offset Size (bytes) Description

0 4 Total size in bytes

4 4 Data section size in bytes

8 4 Number of metadata entries

12 4 Maximum possible number of metadata entries

Metadata

Offset Size (bytes) Description

0 4 Data size in bytes

4 4 Data type

Data structuring system – Data

Consists of arbitrary content

Heavily depends on the data’s purpose

Every data item is categorized and defined in metadata

HiddenFace distinguishes more than 80 data types

Example 1 – “Exfiltrate a file” command
Data type Description

0x0BD1 Randomly generated data

0x03E8
Type of message
Always set to 0xBE3, representing “Command request”

0x03EA Receiving thread ID

0x0FA1
Module ID
Always set to 3C7660B04EE979FDC29CD7BBFDD05F23, representing “Exfiltrate a file”

0x1389 (Optional) Request tag

0x138C Item of unknown purpose

0x1772 Name of the file to exfiltrate

0x0BC2 (Optional) Base directory if the filename is relative

0x1774 (Optional) Known file size

0x1775 (Optional) Known last write time

0x1776 (Optional) Chunk information (file offsets)

0x1779 (Optional) Known SHA-1 hash of the file

Example 2 – Data passed internally to run a module

Data type Description

0x0FA1 Module ID

0x0FA2 (Optional) Module’s shellcode

0x1389 (Optional) Tag

0x1390 (Optional) Event name; to limit module’s execution to one instance only

0x138C Item of unknown purpose

0x1398 Internal framework’s lookup function

Conclusion

Conclusion

HiddenFace (NOOPDOOR) – Backdoor developed and exclusively used by MirrorFace

The most complex malware in MirrorFace’s arsenal

Developed with heavy focus on modularity
→ Can be tailored to current needs

Utilizes other interesting techniques and mechanisms

▪ DGA, data structuring approach, various anti-detection/-analysis techniques

Protective execution chain shows HiddenFace is especially valuable to MirrorFace

HiddenFace is a reasonably big project

Thank you.

dominik.breitenbacher@eset.com @dbreitenbacher dbreitenbacher

Note: IOCs after this slide.

IOCs

IOCs – Files

SHA-1

41ACA6FCF8DF6599764DA638B2BAFDFD5E3EAD8B
512F3C8953AC079B57D1E13F3B8E97F99A054CE9
85E831EAC0AD5A308394BEB1CB7CE702C754FDB6
D96B05E516E9BB3E0AD8702D162440139E33D972

Scheduled Tasks

c:\windows\system32\tasks\microsoft\windows\user profile service\hiveupload
c:\windows\system32\tasks\microsoft\windows\wininet\cachetask
c:\windows\system32\tasks\microsoft\windows\shell\createobject
c:\windows\system32\tasks\microsoft\windows\workplace join\automatic-device-check
c:\windows\system32\tasks\microsoft\windows\media center\pbdadiscoveryw3

IOCs - Files

FaceXInjector XMLs

C:\Windows\system32\diskmgmt.config
C:\Windows\system32\MusNotification.xml
C:\Windows\system32\NetMgmtIF.xml
C:\Windows\system32\BrowserSettingSync.xml
C:\Windows\system32\BluetoothDesktopHandlers.xml

Encrypted HiddenFace

C:\Windows\system32\ActivationManager.tlb
C:\Windows\system32\ksetup.dat
C:\Windows\system32\LaunchWinApp.dat
C:\Windows\system32\win32k.tlb
C:\Windows\system32\Windows.Devices.Custom.dat

IOCs - Network

MirrorFace-controlled servers

5.180.44[.]139
202.182.118[.]157
207.148.97[.]235

C&C domains

vtfraznzdcns.myvnc[.]com
okzhfafcyumv.foeake[.]org
gjeyxinbutely.torefrog[.]com
hopekxpjyqloj.torefrog[.]com
kcxtdemxszlb.torefrog[.]com
lrsjvqxvzqua.torefrog[.]com
ogxzarazhzgu.torefrog[.]com
orufdqjuirceapb.torefrog[.]com
smfyuxgkeqiwgqw.torefrog[.]com

	Slide 1: Unmasking HiddenFace
	Slide 2: Unmasking NOOPDOOR
	Slide 3: Dominik Breitenbacher
	Slide 4: Agenda
	Slide 5: MirrorFace
	Slide 6: MirrorFace
	Slide 7: Victimology
	Slide 8: HiddenFace (NOOPDOOR)
	Slide 9: HiddenFace
	Slide 10: Victimology
	Slide 11: How we discovered HiddenFace
	Slide 12: Execution Chain
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Startup
	Slide 33: Startup
	Slide 34: Startup
	Slide 35: Modular System
	Slide 36: Modular system
	Slide 37: External Modules
	Slide 38: External modules
	Slide 39: External modules – Module Entry
	Slide 40: External modules – Execution
	Slide 41: Internal Framework
	Slide 42: Internal framework
	Slide 43: Internal framework
	Slide 44: Active Communication
	Slide 45: Active communication
	Slide 46: Active communication – DGA
	Slide 47: Active communication – Establishing a session
	Slide 48: Active communication – Commands handling
	Slide 49: Active communication – Commands
	Slide 50: MSRAStealer
	Slide 51: Passive Communication
	Slide 52: Passive communication
	Slide 53: Passive communication – Commands
	Slide 54: Data Structuring System
	Slide 55: Data structuring system
	Slide 56: Data structuring system
	Slide 57: Data structuring system – Data
	Slide 58: Example 1 – “Exfiltrate a file” command
	Slide 59: Example 2 – Data passed internally to run a module
	Slide 60: Conclusion
	Slide 61: Conclusion
	Slide 62: Thank you.
	Slide 63: IOCs
	Slide 64: IOCs – Files
	Slide 65: IOCs - Files
	Slide 66: IOCs - Network

