
FFRI Security, Inc.

How Do We Fight Against Evolving Go Language
Malware? Practical Techniques to Improve
Analytical Skills

JSAC 2023

FFRI Security, Inc.
Tsubasa Kuwabara

FFRI Security, Inc.

Tsubasa Kuwabara

• FFRI Security, Inc.
– Malware Analysis
– Other security services

• Ghidra and x64dbg plugin development
– Developed plug-ins for analyzing Go language binaries, etc.

• SecHack365, Security Camp 2019 Alumni
• Security Camp 2021 Lecturer

2

FFRI Security, Inc.

Table of Contents
How Do We Fight Against Evolving Go Language Malware? Practical Techniques to
Improve Analytical Skills

• Current Status and Issues
• Basic Analysis

– For those with limited experience in Go language malware analysis
• Advanced Analysis

– For those with experience in Go language malware analysis

3

FFRI Security, Inc.

GO LANGUAGE MALWARE
CURRENT STATUS AND ISSUES

4

FFRI Security, Inc.

Advantages of the Go Language in Malware Development
• Go Language

– Easy to describe
– Extensive library
– Cross-compile

• Advantages for Malware Developers
– Easy to develop

• OSS libraries are often used in malware
– Easy to attack multiple platforms

5

FFRI Security, Inc.

Future of Go Language Malware
• Multi-platform attacks

– ElectroRAT *1
• RATs steal digital wallet keys, etc.
• Activities for Windows/Linux/macOS

– Chaos *2
• Versatile malware that exploits vulnerabilities, etc.
• Exists for ARM/Intel/MIPS/PowerPC

• About the future
– Many more are appearing in 2022.

• Chaos, Nerbian, Agenda, etc.
– Go language malware will be observed in the future

6

*1 https://www.intezer.com/blog/research/operation-electrorat-attacker-creates-fake-companies-to-drain-your-crypto-wallets/
*2 https://blog.lumen.com/chaos-is-a-go-based-swiss-army-knife-of-malware/

FFRI Security, Inc.

Problems with Go Malware Analysis
• Existing malware is often C/C++ binaries

• Go language binaries and C/C++ binaries are very different
– The amount of functions is enormous

• Even Hello World has more than 1000 functions.
• Windows APIs and other APIs are called dynamically.

– Difficult to understand functionality of functions
– Unique data structure

• Strings are represented as structs instead of null-
terminated

• Unique types such as interface{} are used
– Unique calling convention

• Different registers, etc. used for arguments and
return values

7

Hello World Functions

Hello World string

Hello World function call

ElectroRAT would be over
8,000.

It's actually about 1400, but it's not
resolved.

FFRI Security, Inc.

Response and problems with the tool
• Existing tool features

– Resolving Function Names
• Quite difficult to analyze without knowing this.

– String extraction, etc.

• Issue
– Difficult to use existing tools for a long time

• Go language can change its structure with version upgrades
– Newer versions may not be able to retrieve function names, etc.

– Malware with obfuscation, such as malware ChaChi, exists.
• Obfuscators for the Go language are used

• Difficult to solve by simply using existing tools as is
– Requires modifications as appropriate

8

FFRI Security, Inc.

Contents
• Basic Go Language Malware Analysis

– Go Language Specific Structures
– Analysis Flow
– Case Studies with Malware

• Advanced Go Language Malware Analysis
– Data in Go language binaries referenced by existing tools
– Supports for Go language version upgrades by modifying existing tool
– Obfuscation measures

9

FFRI Security, Inc.

GO LANGUAGE MALWARE
BASIC ANALYSIS

10

FFRI Security, Inc.

Go-Specific Structures
• Introduction to Go language specific structures before introducing analysis methods

• Data Structure Related
– string
– interface{}
– slice
– map

• Function
– calling conventions

11

FFRI Security, Inc.

string & interface{}
• string

– Structure
• __data: pointer to string

– Not null terminated.
• __len: String length

– Its size is equivalent to sizeof(__data)

• interface{}: Multiple data types allowed
– Structure

• tab: Pointer to data type information
• data: Pointer to data

12

struct string {
char* __data;
int32 or int64 __len;
}

FFRI Security, Inc.

slice
• slice: dynamically resizable array
• Structure

– array: Pointer to array
– len: Length of array

• Its size is equivalent to sizeof(array)
– cap: Length of memory-allocated array

• Its size is equivalent to sizeof(array)

• Function manipulating slice
– func growslice(et *_type, old slice, cap int) slice *1

• Copies the slice specified in the second argument to a slice that holds more memory than the size
specified in the third argument.

• Adding a value to the slice is done on the return value of this growslice.
• Argument structure is different starting from Go 1.20

• Variable-length arguments are represented by the same structure as slice
– func Command(name string, argstring) *Cmd *2

• Command("cmd", "/C", "bin") == Command("cmd ", [2]string{"/C", "bin"})

13

struct slice {
void* array;
int32 or int64 len;
int32 or int64 cap;
}

*1 https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/slice.go#L178
*2 https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/os/exec/exec.go#L271

FFRI Security, Inc.

map
• map: associative array

• Function manipulating map (if key is a string)
– func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) *1

• Specify the type of map as the first argument, the map to access as the second
argument, and the key as the third argument

• Return the value corresponding to the key and success or failure
– func mapassign_faststr(t *maptype, h *hmap, s string) unsafe.Pointer *2

• Specify the type of map as the first argument, the target map as the second
argument, and the key as the third argument

• Assign a value to the return value

14

*1 https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/map_faststr.go#L108
*2 https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/map_faststr.go#L203

FFRI Security, Inc.

Calling Conventions
• Difference from existing in Windows amd64

– If i386, the stack is used.

• Argument and return value assignment
– Go 1.17 or higher & amd64: arguments and return values are used in order from rax
– Go 1.16 and below ¦ i386: Return values are used from the end of the stack used by
the argument

• Definition in Go language source code
– Defined in "paramIntReg<architecture name>" below.

• https://raw.githubusercontent.com/golang/go/go1.19.1/src/cmd/compile/internal/ssa/opGen.go

Microsoft x64
calling
convention

Go Language
(>=Go 1.17)

Go Language
(<Go 1.17)

argument rcx,rdx,r8,r9,sta
ck

rax,rbx,rcx,rdi,rsi,r8
,r9,r10,r11,stack

stack

return value rax same as above same as above

15

FFRI Security, Inc.

Tool
• https://github.com/mooncat-greenpy/Ghidra_GolangAnalyzerExtension

– Resolves function names
– Resolves bytes and registers used in arguments and return values
– Extracts data type names and field information
– Extracts strings
– Annotates names of the source code file corresponding to the assembly
– Annotates source code line number corresponding to the assembly

• Subsequent Ghidra screenshots show results using GhidraAnalyzerExtension

16

Without the tool With the tool

FFRI Security, Inc.

Analysis Flow
• Check main (main.main) function

– Take a brief look at assembly and decompile results
• Functions to be called

– Check the init function used for initialization if it exists.
• Check function name, file name, and structure sequence

– Obvious doubtful names
– OSS libraries used

• Estimate functions from the above information and confirm its estimation
– Is the function as used or not or as estimated?

• Analyze in detail Supplement
If you don't know the main function, trace it from
the entry point.
Please refer to the following blog for the details
https://engineers.ffri.jp/entry/2022/04/11/141131

The init function is explained in the Appendix

17

FFRI Security, Inc.

Case Study: ElectroRAT
• It was active on Windows, Linux, and macOS

• Analysis Flow
– Install and run GolangAnalyzerExtension on Ghidra
– Check main.main
– Estimate its functions from lists of function and file names

• Checking structures is not covered in this talk
– Verify the above estimation
– Analyze in detail

18

FFRI Security, Inc.

• Excerpts of Notable Function Call
– net/http.(*Client).Get
– io/ioutil.readAll
– main.registerUser
– main.setAutostart
– main.StartKeyLogger
– main.socketConnect

• Guessing functions
– Automatic execution
functionality is available and
main functions are based on
communication with C2

• main.init is not covered in this talk
– map is created, etc.

ElectroRAT: Check main.main

omission

omission

omitted

Decompiled main.main (tools applied without manual modification)

Implemented
by developer

Standard
library

19

FFRI Security, Inc.

ElectroRAT: Check function name and file name
File name list (Window → GolangAnalyzerExtension)

Function name list

20

• Anticipated malware features
– Information theft

• github.com/gorilla/websocket
• main.uploadFile
• main.uploadFolder

– Automatic startup setting
• github.com/ProtonMail/go-autostart
• main.HideFile
• main.copyAppToStartDir

– Terminal information acquisition
– Software used to note content typed (typically to
steal passwords)

– Obtain screenshots
• Simplified check of the caller of the estimated function
and whether the estimation is correct.
– Only the bolded above is confirmed this time

FFRI Security, Inc.

ElectroRAT: Information Theft Caller
• gorilla/websocket.(*Dialer).Dial

– (*Dialer).Dial is called first
– Caller: main.socketConnect

• Called from main.main

• main.upload(File¦Folder)
– Caller: both main.socketConnect.func1

• main.socketConnect.func1
– Cannot figure out from Call Trees

• Because Goroutine is used to perform parallel
processing
– The function to be executed is passed via
arguments

– Caller: main.socketConnect
• Search from address references, etc.

Called internally

Call Trees in main.socketConnect

main.socketConnect function

21

Function to execute
Goroutine

Call Trees in main.uploadFile

FFRI Security, Inc.

ElectroRAT: Information Theft Process

Type of object to
communicate with

POST" stringResty.Request

Decompile result of main.uploadFile

22

The third and fourth arguments
are substituted
likely file path

keymap type Object of map

Function to create an
object of a specified

type Object of map

• The following will be added to the map
– Key: "file".
– Value: Argument of main.uploadFile

• File path to upload

• Information theft by sending files
– SetFiles to specify a map containing
file paths
• Transmission file settings

– Send externally with Execute
• POST command

FFRI Security, Inc.

ElectroRAT: Auto Startup Settings
• Auto start setting to files created by main.copyAppToStartDir

– Using OSS
• https://github.com/ProtonMail/go-autostart

• go-autostart
• Using cgo

• Go language to C language
• A shortcut file is created in the
startup folder using COM

Confirmation
of success or
failure of
IsEnabled

Decompile result of main.setAutostart

Source code for go-autostart

23

FFRI Security, Inc.

Examples of OSS libraries used by ElectroRAT
• github.com/ProtonMail/go-autostart

– Automatic startup setting
• github.com/gorilla/websocket

– Socket communications
• github.com/matishsiao/goInfo

– Obtain terminal information
• github.com/mitchellh/go-ps

– Get process list
• etc.

• All support Windows, Linux, and macOS.
• Read the source code for the OSS library process

24

FFRI Security, Inc.

Frequently used OSS libraries
• Libraries for multiple platforms

– github.com/denisbrodbeck/machineid
• Obtain ID to identify the terminal

– github.com/shirou/gopsutil
• Obtain process and system-related information

– github.com/gorilla/websocket
• Socket communications

– github.com/kardianos/service
• Provide service operation

• Libraries for specific platforms, requiring a lot of work to implement in the Go language
– github.com/go-ole/go-ole

• Windows COM wrapper
– github.com/lxn/win

• Windows API Wrapper

25

FFRI Security, Inc.

Details
• Now we have a rough idea of the malware's functionality
• Based on these findings, a more detailed analysis is performed

– Only the following topic is covered

• Communication with C2
– main.socketConnect is supposed to handle the main malware

• Because socket communication is performed by main.socketConnect after
preliminaries such as infection notification to C2 by main.registerUser and
automatic startup setting by main.setAutostart

26

FFRI Security, Inc.

Analysis of main.socketConnect
• Main processing

– Establish communication
• Creates Conn objects required for communication

– Call main.socketConnect.func1
• Passes a Conn object as the second argument

27

Conn object.
Set as 2nd argument
Arguments of functions executed by Goroutine are
described in the Appendix

IP address string
(Arguments of main.socketConnect)

Conn object is created

omission

Function to execute
Goroutine

FFRI Security, Inc.

main.socketConnect.func1
• Process Flow

– Receive command from C2
– Parse command
– Execute command
– Send results to C2

28

FFRI Security, Inc.

Receive instructions & parse command

Object of
&main.Command

Type
string

Command
decision
Run command

29

omission

Type of
&main.Command

Decoder Object
Retain incoming data

omission
Use the Argument Conn.
Get incoming data

main.socketConnect.func1 function

Command structure (Data Type Manager)

• Received data is converted to
main.Command
– Type field is treated as a command

FFRI Security, Inc.

Return value
execution result

Execution of instructions & transmission of results
• Extracts a Command string from the
main.Command structure and executes it.

• Convert results to JSON format and send to
external devices

Offset: 0x58
RAX=&main.Command

30

main.Command structure
Get Command field

omission

main.socketConnect.func1 function

JSON
formatData field structure

Offset from the beginning of
main.Command: 0x58

Execute the Command
and return the result

FFRI Security, Inc.

Streamline analysis by comparing samples
• Introduce the comparison of the samples to be analyzed with existing samples and
samples observed within the same incident

• Identical process exists
– Analysis can be shortened

• Similar but different processes exist
– Understanding Attack Trends
– Investigation of the cause of infection of new samples when existing samples are
protected

• Go language binaries allow you to get the file name and line number of the source
code, so you can follow the differences in detail.

31

FFRI Security, Inc.

Comparison of old and new samples
• Compare the following samples

– Left: e9b83d5cdefd4486b32a927d7505cdeebb43e6977759ba069d9373e46ca7d0f2 (new)
– Right: 170cb5ea1a6b4af3c27358ba267a1309ed5118481619fc874f717262cb91fb77 (old)

32

Some files have been added or deleted.
See the differences in commands on the

next page.

⊝⊕
⊝

⊝

Files are facilitated for each target
environment of samples.

FFRI Security, Inc.

• Analyze mainly the sections changed.

Command changes between samples

(computer) command Number of rows in
e9b83d... (new)

Number of rows in
170cb5... (old)

Get folder content 130̃133 100̃103
Keylogger 135̃149 105̃118
Screenshot 151̃164 119̃128
Camera photo 129̃134
Processes list 166̃169 135̃137
Download file 171̃179 138̃145
Download folder 181̃189 147̃153
Add file 191̃205
Delete file 207̃215 154̃161
Kill process 217̃225 162̃169
Chrome passwords 170̃176
Run service 227̃235 177̃202
Run command 237̃245 203̃210

33

keylogger_windows.go was
deleted but keylogger
command exists

Deleted command related to
chrome_windows.go is deleted

Added command related to
downloadFile.go is added

Compare the number of lines in the socket.go file in which the command is implemented

FFRI Security, Inc.

GO LANGUAGE MALWARE
ADVANCED ANALYSIS

34

FFRI Security, Inc.

Go Version Upgrade
• Tools work well suddenly stop working well

– Version upgrades to the Go language change the data that the tool references
– Example: ElectroRAT can be analyzed, but newer Chaos cannot be analyzed, etc.

• Contents will be covered in this presentation
– Explanation of metadata structure of Go language binaries

• Information used by existing tools
• Changes in past version upgrades

– Tool modification case study

35

FFRI Security, Inc.

Introduction of Go Binary Metadata
• Data that the tool often refers to

– Function Information
• Contains information such as function names
• Used for displaying stack traces, etc.

– Data information
• Includes data names and field information
• Used to specify types in object creation, interface{}, and map

36

FFRI Security, Inc.

Overview of Metadata Composition
• Structure to manage the metadata

– moduledata
• Maintains link to pcHeader and data type information

– pcHeader
• Maintains links to function information

37

Only some fields in the binary for 64-bit are shown, and
the same applies to subsequent figures.

FFRI Security, Inc.

Metadata Components
• moduledata *

– pcHeader
• Pointer to pcHeader

– text
• Pointer to code
• Basically identical to .text section

– types
• Base address for type information

– typelinks
• Array (slice) of offsets from types to type
information

38

* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/
symtab.go#L415-L457

FFRI Security, Inc.

Metadata Components
• moduledata *

– pcHeader
• Pointer to pcHeader

– text
• Pointer to code
• Basically identical to .text section

– types
• Base address for type information

– typelinks
• Array (slice) of offsets from types to type
information

39

* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/
symtab.go#L415-L457

Adding types
Go 1.7

Change from pointer to offset
Go 1.7

Offset changes due to field additions
Go 1.7 , Go 1.8 , Go 1.16 , Go 1.17 , Go 1.18 , Go 1.20

FFRI Security, Inc.

Metadata Components
• pcHeader *

– magic, pad1, pad2
• Fixed value

– ptrSize
• Pointer Size

– nfunc
• Number of functions

– textStart
• Same as moduledata.text

– funcnameOffset
• Offset from pcHeader to function name sequence

– pclnOffset
• Offset from pcHeader to array containing link to function information

40
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/symtab.go#L395-L408

FFRI Security, Inc.

Metadata Components
• pcHeader *

– magic, pad1, pad2
• Fixed value

– ptrSize
• Pointer Size

– nfunc
• Number of functions

– textStart
• Same as moduledata.text

– funcnameOffset
• Offset from pcHeader to function name sequence

– pclnOffset
• Offset from pcHeader to array containing link to function information

41
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/symtab.go#L395-L408

Change magic
Go 1.16, Go 1.18, Go 1.20

Reference method change
Go 1.16

Offset changes due to field additions
Go 1.16 , Go 1.18

FFRI Security, Inc.

Locating Metadata
• Use the section

– pcHeader is placed at the beginning of the .gopclntab section
– .gopclntab section may not exist in Windows

• When "-ldflags="-w -s" option is used

• Use magic in pcHeader
– The first magic field has the value "0xfffffff0".

• Error occurs when this field is written
– pclnOffset, etc. can be written

– Explore this value

• moduledata can be searched from pointers on pcHeader

42

Go 1.19

FFRI Security, Inc.

• Flow of retrieving the following information from pcHeader
– Function address
– Function name
– Argument and return bytes

Composition of function information

43

Flow to obtain _func that holding
function information

Flow of getting function information
from _func

FFRI Security, Inc.

Components of Function Information
• functab *

– entryoff
• Offset to the first address of the function
• Relative to pcHeader.textStart

– funcoff
• Offset to function information
• Relative to the head of functab array

44
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/symtab.go#L562-L565

FFRI Security, Inc.

Components of Function Information
• functab *

– entryoff
• Offset to the first address of the function
• Relative to pcHeader.textStart

– funcoff
• Offset to function information
• Relative to the head of functab array

45
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/symtab.go#L562-L565

Change of base address
Go 1.16

Change from pointer to offset
Go 1.18

Change in size
Go 1.18

FFRI Security, Inc.

Components of Function Information

46
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/runtime2.go#L869-L885

• _func *
– entryoff

• Offset to the first address of the function
• Relative to pcHeader.textStart

– nameoff
• Offset to function name
• pcHeader address + pcHeader.funcnameOffset
+ _func.nameoff

– args
• Number of bytes used in arguments and return
values

– pcsp, pcfile, pcln
• Information to retrieve stack size, file name,
and line number corresponding to the assembly

• How to retrieve the information will be published later in our
blog

FFRI Security, Inc.

Components of Function Information

47
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/runtime2.go#L869-L885

Change the base address of nameoff
Go 1.16

Change from pointer to offset
Go 1.18

• _func *
– entryoff

• Offset to the first address of the function
• Relative to pcHeader.textStart

– nameoff
• Offset to function name
• pcHeader address + pcHeader.funcnameOffset
+ _func.nameoff

– args
• Number of bytes used in arguments and return
values

– pcsp, pcfile, pcln
• Information to retrieve stack size, file name,
and line number corresponding to the assembly

• How to retrieve the information will be published later in our
blog

FFRI Security, Inc.

Function information retrieval
• Exemplified by Ghidra

48

functab[nfunc].

_func

function name
string

＋

＋

＋ ＋

FFRI Security, Inc.

Composition of data type information
• The flow for obtaining the _type structure containing each data type information
from moduledata is shown in the figure below

• _type
– Maintains information such as size and type of data type
– Information specific to each type is added at the end of _type
– Used in object creation and map access functions

49

FFRI Security, Inc.

Components of data type information

50
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/type.go#L35-L52

• _type *
– size

• Number of bytes of data type
– kind

• Data Type
• Example of relationship between value
and type
– 1: Bool, 2: Int, 17: Array, 21: Map,
22: Pointer, 25: Struct

– str
• Offset to data type name
• Relative to moduledata.types

FFRI Security, Inc.

Components of data type information

51
* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/runtime/type.go#L35-L52

Change from pointer to offset
Go 1.7

Change in method of
obtaining strings
Go 1.17

• _type *
– size

• Number of bytes of data type
– kind

• Data Type
• Example of relationship between value
and type
– 1: Bool, 2: Int, 17: Array, 21: Map,
22: Pointer, 25: Struct

– str
• Offset to data type name
• Relative to moduledata.types

FFRI Security, Inc.

Data type information retrieval
• Exemplified by Ghidra

52

Array of typelinks

＋
_type

0x36&0x1f=22

FFRI Security, Inc.

Example of Go Version Upgrade Support
• Target sample

– Chaos
• Hash value:
ebe0f9855eb8f6bd980ed60c26e3a877dc1ace5d664e248bb0558996fe0bd06f
– Go version: Go 1.18.1
– OS: Linux
– Arch: x86

• Tool (esp. software, etc.)
– https://github.com/f0rki/r2-go-helpers

• Script for radare2
• Function: Resolve function name

53

FFRI Security, Inc.

Confirm current scope of support
• Results of applying to a binary built with Go 1.15

– Function enumeration (afl)

– Assembly view of go.main.main (pdf)

Correction

Corrected to vaddr

Add 4 to the argument

54

FFRI Security, Inc.

Confirmation of current scope of support
• Application results for Chaos

– Execute script

– Function enumeration (afl)

Function Address
Obviously different values
are displayed.

Functions are not
enumerated

55

FFRI Security, Inc.

Impact of Version Upgrade
• pcHeader → _func

– magic value changed
– Change reference method for arrays containing links to function information
– Change base address of functab.funcoff
– Functab field size changed from pointer size to 0x4

pcHeader
immediately
followed by
functab[nfunc]

Locating functab[nfunc]
using pclnOffset

Go 1.15 or earlier Go 1.18 or later
0xfffffffb 0xfffffff0

56

FFRI Security, Inc.

Impact of Version Upgrade
• _func → Function information

– _func.entryoff changed from pointer to offset
– Base address change for _func.nameoff

Go 1.15 or earlier Go 1.18 or later

57

FFRI Security, Inc.

Tool modification for Chaos
• Causes of failure in extraction

– Failure to respond to changes between Go 1.15 and Go 1.18.

• Areas that should be corrected *

Different method of obtaining
functab array position

Different functab sizes

It will be an offset, not an
address.

Base address is different

58
* https://github.com/f0rki/r2-go-helpers/blob/d1167e4b96ba0e3c33ee8c5e578bb3cde930324e/gohelper.py#L165-L177

FFRI Security, Inc.

Applying modified tools to Chaos
• Application results for Chaos

– Function enumeration (afl)

– Assembly view of go.main.main (pdf)

59

FFRI Security, Inc.

Support for obfuscation by gobfuscate
• What will be explained

– Introduction of obfuscation methods with gobfuscate
– Malware String Unobfuscation
– Functional Estimation in Obfuscated Malware

• Target sample
– ChaChi

• Hash value:
8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14de2a39d5b

60

FFRI Security, Inc.

Obfuscation with gobfuscate

String obfuscation

Obfuscated functions

61

Should be
a string

Should be
a string

func Bool(name string, value bool, usage string) *bool *

* https://github.com/golang/go/blob/4a4127bccc826ebb6079af3252bc6bfeaec187c4/src/flag/flag.go#L734

• What is gobfuscate?
– Functions: obfuscation of strings and functions, etc.
– Obfuscation by modifying source code, etc.
– https://github.com/unixpickle/gobfuscate

• Here we deal with string obfuscation

FFRI Security, Inc.

gobfuscate string obfuscation
• String obfuscation methods with gobfuscate

– Generating a string with an anonymous function
– String is encrypted by XOR

An anonymous function is used.

Converts a byte sequence to a string

62

Function generated when obfuscating "golang" with gobfuscate

FFRI Security, Inc.

String obfuscation in ChaChi
• Function: main.main.func1

0x41fbfb281bda8257 0x2888894d6bf7ed3

0x69737265702d6f6e

0xeb50 0x9f23

0x7473

no-persist

XORXOR

Byte-string extraction

XOR a sequence of bytes.

Number of loops

Converts a byte sequence to a string and places
it in the return value.

63

FFRI Security, Inc.

Anonymous Functions
• Go Language Anonymous Functions

– Example: f := func(arg string) string { return "arg: " + arg }

• Representation in Assembly
– Function name is in the form "<function name of implementation source>.func%d"

• Not all function names of this form are developer-implemented anonymous
functions.

64

FFRI Security, Inc.

String Obfuscation Removal for ChaChi
• How to implement?

– For functions that are anonymous and only called by
runtime.slicebytetostring
• With exceptions such as the function itself and
runtime.morestack_noctxt

– Get the data stored on the stack in the second and third
lines of the function

– XOR the acquired data and convert it to a string
– Rename the function name with the obtained string

snipped

65

Second and third lines

main.main.func1 function

FFRI Security, Inc.

String Obfuscation Removal for ChaChi

66

ChaChi's main.init function
(The label of the destination memory is set manually.)

Unobfuscated

Unobfuscated

Unobfuscated

• Multiple obfuscated strings
• Stored in memory after decryption

FFRI Security, Inc.

Function estimation of Obfuscated Malware
• Obfuscated strings in ChaChi have been resolved, but there is still obfuscated
information that is difficult to parse

• Introduction to the estimation of functions and OSS libraries used to efficiently
analyze obfuscated samples
– Estimate functions

• Collection of surface information
– Estimate OSS libraries in use

• Estimated from file name, line number, etc.

67

Obfuscated function names do not reveal
what they are doing.

FFRI Security, Inc.

Estimating the function
• Check the file name sequence
• The service is supposed to have the ability to run

– service.go file exists
• Call OpenService in the internal process

68

filename sequence

FFRI Security, Inc.

Presumption of OSS libraries
• Investigate heimaoplnhkdaeiflhmp/lpdkaklidghllnacngmd/lmmbpplgmfkpanjncdff

– Probably OSS libraries available on github.com
• If you can identify the above paths, you can read the source code to understand the internal
processing and usage, which makes the analysis more efficient

• Attempt a search with the following unobfuscated string

69

SYSTEM¥CurrentControlSet¥Control

WaitToKillServiceTimeout

FFRI Security, Inc.

Identify Library
• Search: "site:github.com golang WaitToKillServiceTimeout
SYSTEM¥CurrentControlSet¥control"
– https://github.com/kardianos/service/blob/master/service_windows.go

• File name matches
• Line numbers also match to some extent

– String obfuscation shifts the number of lines
– https://github.com/takama/daemon/blob/master/daemon_windows.go

• File names do not match

• OSS library "github.com/kardianos/service" is used

70

FFRI Security, Inc.

OSS libraries used by ChaChi
• github.com/rs/xid

– Obtain a unique ID
• github.com/fasthttp/websocket

– gorilla/websocket fork with fasthttp support
• github.com/armon/go-socks5

– SOCKS5 Server
• github.com/fsnotify/fsnotify

– File system notification
• github.com/jpillora/backoff

– Exponential backoff counter
• github.com/Jeffail/tunny

– Library for generating and managing Goroutine pools
• etc.

71

FFRI Security, Inc.

SUMMARY

72

FFRI Security, Inc.

Reflection and Challenges
• Challenge

– Go language malware presents several challenges that make analysis difficult

• To improve analytical skills
– Basic analysis flow and tips
– How to modify the metadata in Go language binaries and the tools that use it
– Support for Go language version upgrades
– Coutermeasures against obfuscated samples

• Future Issues
– Poor decompile performance of Ghidra and others
– Lack of dynamic analysis tools

73

FFRI Security, Inc.

Tools
• https://github.com/mooncat-greenpy/Ghidra_GolangAnalyzerExtension

– Ghidra plugin for binary analysis made by Go language used mainly in this
presentation

• https://github.com/FFRI/JSAC2023-GolangMalwareAnalysis
– Scripts of radare2 modified in response to version upgrade
– Ghidra script to remove string obfuscation by gobfuscate

74

FFRI Security, Inc.

Thank you for attending!

FFRI Security, Inc.

APPENDIX

76

FFRI Security, Inc.

Appendix: init Function
• init function

– It is a function used for initialization, etc.
– Called before the main function
– Multiple definitions possible

• Representation in Assembly
– Function names are in the form "<module name>.init.%d" or "<module name>.init"

• Example: main.init.0
– init function is called by runtime.doInit function

• runtime.doInit function is called from runtime.main function which calls main
function

77

FFRI Security, Inc.

Appendix : Goroutine
• Goroutine

– Go's unique lightweight threads
– Example: go sub_func(0x1, 0x10, 0x100, 0x1000) // execute sub_func function

• Representation in Assembly
– Goroutine is started by runtime.newproc function
– Argument differences by version

• Go 1.17 or lower
– Pass a pointer to memory with "call function pointer, argument 1, argument 2, ..."
as the second argument

• Go 1.17 or higher
– A wrapper function for the target function is passed to newproc

» Some arguments are provided in the wrapper function
• Go 1.18 or higher

– Pass the pointer described above as the first argument

78

FFRI Security, Inc.

Appendix: Version Determination
• Here is how to retrieve the version of the Go language used to build the Go binaries

79

Search this byte
sequence

Pointer Size

Pointer to string
Version string

It was built with Go 1.13.5.

Character string
length

Pointer to version information

	How Do We Fight Against Evolving Go Language Malware? Practical Techniques to Improve Analytical Skills
	Tsubasa Kuwabara
	Table of Contents
	Go Language Malware� Current Status and Issues
	Advantages of the Go Language in Malware Development
	Future of Go Language Malware
	Problems with Go Malware Analysis
	Response and problems with the tool
	Contents
	Go Language Malware�Basic Analysis
	Go-Specific Structures
	string & interface{}
	slice
	map
	Calling Conventions
	Tool
	Analysis Flow
	Case Study: ElectroRAT
	ElectroRAT: Check main.main
	ElectroRAT: Check function name and file name
	ElectroRAT: Information Theft Caller
	ElectroRAT: Information Theft Process
	ElectroRAT: Auto Startup Settings
	Examples of OSS libraries used by ElectroRAT
	Frequently used OSS libraries
	Details
	Analysis of main.socketConnect
	main.socketConnect.func1
	Receive instructions & parse command
	Execution of instructions & transmission of results
	Streamline analysis by comparing samples
	Comparison of old and new samples
	Command changes between samples
	Go Language Malware� Advanced Analysis
	Go Version Upgrade
	Introduction of Go Binary Metadata
	Overview of Metadata Composition
	Metadata Components
	Metadata Components
	Metadata Components
	Metadata Components
	Locating Metadata
	Composition of function information
	Components of Function Information
	Components of Function Information
	Components of Function Information
	Components of Function Information
	Function information retrieval
	Composition of data type information
	Components of data type information
	Components of data type information
	Data type information retrieval
	Example of Go Version Upgrade Support
	Confirm current scope of support
	Confirmation of current scope of support
	Impact of Version Upgrade
	Impact of Version Upgrade
	Tool modification for Chaos
	Applying modified tools to Chaos
	Support for obfuscation by gobfuscate
	Obfuscation with gobfuscate
	gobfuscate string obfuscation
	String obfuscation in ChaChi
	Anonymous Functions
	String Obfuscation Removal for ChaChi
	String Obfuscation Removal for ChaChi
	Function estimation of Obfuscated Malware
	Estimating the function
	Presumption of OSS libraries
	Identify Library
	OSS libraries used by ChaChi
	summary
	Reflection and Challenges
	Tools
	Thank you for attending!
	Appendix
	Appendix: init Function
	Appendix : Goroutine
	Appendix: Version Determination

