

The Rule for Wild Mal-Gopher Families.

NTT Security Japan

Kazuya Nomura

Sachito Hirao

- 1. Introduction
- 2. Creating YARA Module
- 3. Clustering Evaluation
- 4. Applying to "Wild" Binaries
- 5. Conclusions

Appendix

1. Introduction

The Rule for Wild Mal-Gopher Families.

Kazuya Nomura

SOC analyst at NTT Security Japan. His main work is alert monitoring with IPS/IDS/EDR. He has contributed articles on malware analysis and data visualization in NTT Security Japan. He is a recipient of the MWS2020 paper award and an outstanding alumnus of SecHack2020.

Sachito Hirao

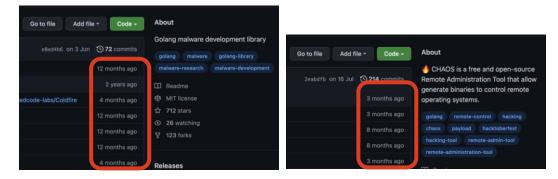
SOC analyst at NTT Security Japan. Formerly an infrastructure engineer in the financial sector.

At SOC, he was in charge of NW/EDR alert monitoring as well as malware analysis.

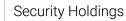
Golang Malware

- Golang malware family grows year after year
 - Complexity of analysis due to characteristic structure
 - Buildable for multiple platforms
- The number of diverse samples will continue to increase
 - Increased efficiency of classification
 - Increased efficiency of analysis by attributing to previously analyzed samples

Improved efficiency of Golang malware classification and analysis



Advantages for the attacker


Golang Malware

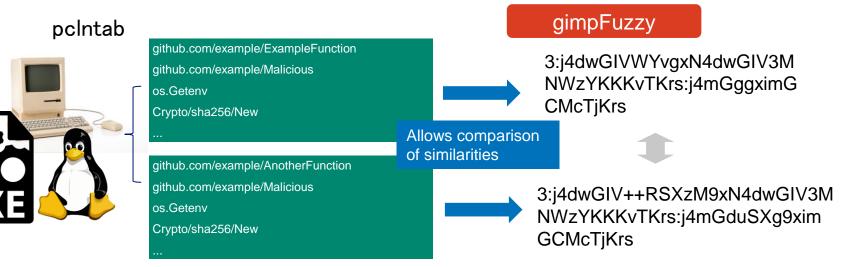
- Various malware creation frameworks exist for Golang
 - Coldfire
 - CHAOS
 - EGESPLOIT
 - ARCANUS
- Many frameworks in active development

https://github.com/redcode-labs/Coldfire

https://github.com/tiagorlampert/CHAOS

ТΤ

gimphash


- Golang binary version's imphash
 - Golang binaries have a platform-independent structure called pcIntab
 - Dependent package names, function names, etc. can be restored
 - gimphash is a partial SHA256 hash of the recovered package/function name
 - Uniquely capable of representing the functionality on which malware depends, but **similarity comparisons** of different hashes are not possible

- gimphash to fuzzy hash
 - SHA256 output varies greatly if input differs by even 1 bit
 - Fuzzy Hash computes a "rough" hash that returns similar values for similar inputs
 - gimpfuzzy uses ssdeep. Similarity between samples can be measured.

Motivation & Goals

1. YARA module implementation

Enables fast and easy classification of large sample groups

2. Accuracy evaluation using analyzed samples

Consider optimal parameters for family classification

3. Applied to samples submitted to VirusTotal

- Application to unanalyzed "wild" samples
- Discussion of the latest Golang malware applications

© 2023 NTT Security Holdings All Rights Reserved

Difference Between Previous Presentation **ONTT**

CODE BLUE 2022

"Who is the Mal-Gopher? - Implementation and Evaluation of "gimpfuzzy" for Go Malware Classification"

- First to propose a method for applying Fuzzy Hash to gimphash
- Analyzed samples are classified by gimphash and evaluated the accuracy.
- JSAC2023 "The Rule for Wild Mal-Gopher Families." Implementation and evaluation with a focus on application in actual operations and analysis
 - Creation of a YARA module that allows classification of samples for implementation.
 - Application and evaluation of "wild" unanalyzed samples submitted to VT

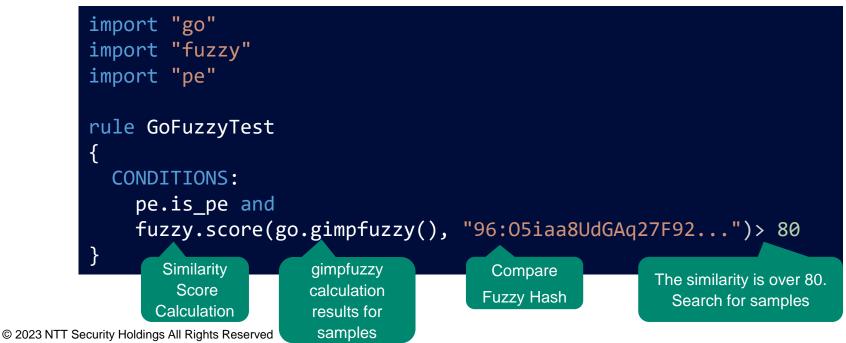
Creating YARA Module

The Rule for Wild Mal-Gopher Families.

• Toolkit for malware classification being developed by VT^[1]

- By writing classification rules, only samples that satisfy the rules can be searched
- High speed because it is implemented with C
- Various modules exist depending on the file structure
- The following modules do not exist
 - Module for handling Golang binaries
 - Module for Fuzzy Hashing and string similarity calculation
- To make it easier to classify samples by gimpfuzzy, YARA module was newly impremented

Creating YARA Module


Implement the following two

- go module : analyzes PE binaries made by golang
 - go.gimpfuzzy() : gimpfuzzy calculate from extracted function name
 - go.function_names : sort strings of extracted function names
- fuzzy module : calculate similarity of Fuzzy Hash
 - fuzzy.fuzzy() : fuzzy hash calculation from argument string
 - fuzzy.score() :computes score based on the edit distance between two argument strings

Writing YARA Rule

- Example of YARA rules
 - Enables searches based on similarity of samples based on gimpfuzzy

Using YARA Module

Enables sample search based on gimpfuzzy similarity

root@1f06b9d1f716:/malwares# yara /test.yara -r . GoFuzzyTest . /Valhalla_hktl_htran_golang/4550635143c9997d5499d1d4a4c860126ee9299311fed0f85df9bb304dca81ff GoFuzzyTest . /Valhalla_hktl_htran_golang/645622a85906da6304315ae9444046f2310609da933f53e87b54fbb206b53e3e GoFuzzyTest . /Valhalla_hktl_htran_golang/4e5468e36dc7bc5601384f22c032f990f2e8454d27f6b11e8e897fb0c6c5e0e5 GoFuzzyTest . /Valhalla_hktl_htran_golang/65cfa86dec6f19cdbf5f9641ab835af023d34fa23b0e31a9f9b66c93a221d7a2 GoFuzzyTest . /Valhalla_hktl_htran_golang/72549bdc9e857162603f3ce90f1bfc8eb761e7e9f399a24a2bba47468b6edfe3 GoFuzzyTest . /Valhalla_hktl_htran_golang/91bce99e792db5c3da42da3f01f50a1021f9538b78f70544bedc9ca7508ce54e GoFuzzyTest . /Valhalla_hktl_htran_golang/d45a6f12d5956f0fb8ad17727c717b621e3be06fabf9ff27058cb86f8f108b7d GoFuzzyTest . /Valhalla_hktl_htran_golang/e70e0c8fb2727b35b65596a6e2838abd0b5f7351cdd4031b9971b91c22f5d15c

Developing YARA Module

• Implement the following functions

٢	function (e.g. math, programming, programing)			
Main imple ment ation	module_initialize	Initialization process for YARA module		
	module_finalize	YARA module termination process		
	module_load	Processing when the module reads a file Implement the actual parsing logic for the file		
	module_unload	Post-processing when the module reads a file Delete hash tables, open structures, etc.		

Developing YARA Module

• It is important that each function returns a corresponding error when an exception occurs.

	ERROR_SUCCESS 0 success process	
	ing	
#define	ERROR_INSUFFICIENT_MEMORY 1	7
#define	ERROR_COULD_NOT_ATTACH_TO_PROCESS 2	
#define	ERROR_COULD_NOT_OPEN_FILE_3	
#define	ERROR_COULD_NOT_MAP_FILE 4	► error
#define	ERROR_INVALID_FILE 6	handling
#define	ERROR_CORRUPT_FILE 7	

Demonstration : YARA Module

Demonstration

© 2023 NTT Security Holdings All Rights Reserved

Clustering Evaluation

The Rule for Wild Mal-Gopher Families.

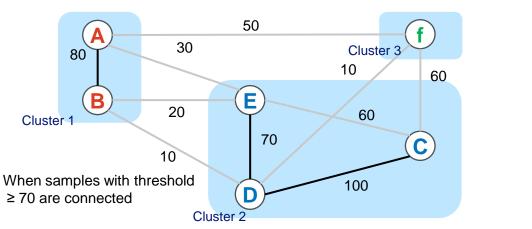
Clustering Evaluation

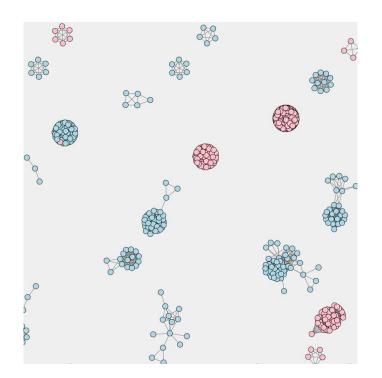
• Clustering evaluation using actual observed "wild" samples

Evaluation using analyzed samples

- Classify samples identified as malware only
- Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-todate samples

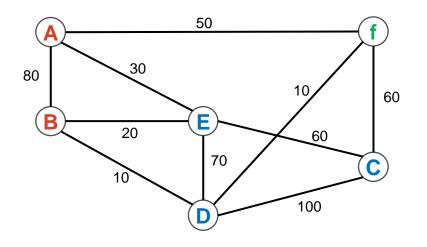

- Includes samples not identified as malware
- Evaluate use in actual operations



Overview of Clustering Methods

gimpfuzzy similarity-based clustering ٠

- Calculate gimpfuzzy of samples for clustering 1.
- 2. Calculate gimpfuzzy similarity between samples for clustering
- Edge-connect samples with similarity above a threshold 3.
- 4. Connected samples are considered as a cluster.

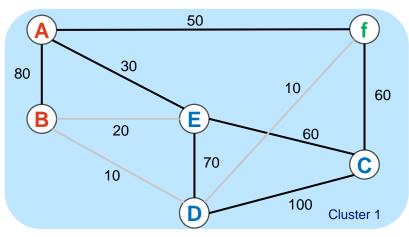


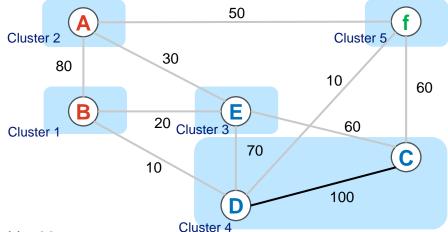
Scoring Matrix

- Calculate scores for all combinations of samples
 - Scoring of string similarity from 0~100 based on edit distance
 - Create an "adjacency matrix" and consider an undirected graph

						<u> </u>
	Α	В	С	D	E	f
А	0	80	0	0	30	50
В	80	0	0	10	20	0
С	0	0	0	100	60	60
D	0	10	100	0	70	10
Е	30	20	60	70	0	0
f	50	00	60	10	0	0

Color corresponds to family





How to Evaluate Clustering

- How to cut the threshold: what constitutes good clustering?
 - Low threshold case: a small number of large clusters are formed
 - High threshold case: a large number of small clusters are formed

Threshold \geq 30

 \bigcirc Many samples can be tied together (**integrity** \uparrow) Decrease in classification accuracy within a \triangle cluster (**homogeneity** \downarrow) Threshold ≥ 90

 \bigcirc High classification accuracy within clusters (homogeneity \uparrow)

 \triangle Clusters are too separated to be meaningful (integrity \downarrow)

How to Evaluate Clustering

- Harmonic mean is considered in trade-off between the two
- Using **V-measure**^[2] implemented in scikit-learn for evaluation
 - Homogeneity Score *h*: The higher the percentage of a single correct answer group in a given cluster, the score is better
 - Integrity score *c* : The fewer cluster into which a given group of correct answers is classified, the score is better

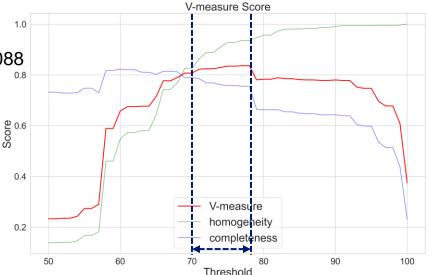
$$V_{\beta} = (1 + \beta) \cdot \frac{h \cdot c}{h + c}$$

$$h = \begin{cases} 1 & \text{if } H(C, K) = 0 \\ 1 - \frac{H(C|K)}{H(C)} & \text{else} \end{cases} (1) \qquad c = \begin{cases} 1 & \text{if } H(K, C) = 0 \\ 1 - \frac{H(K|C)}{H(K)} & \text{else} \end{cases} (2)$$
where
$$H(C|K) = -\sum_{k=1}^{|C|} \sum_{c=1}^{|C|} \frac{a_{ck}}{N} \log \frac{a_{ck}}{\sum_{c=1}^{|C|} a_{ck}}}{n} \log \frac{\sum_{k=1}^{|C|} a_{ck}}{n} \log \frac{\sum_$$

[2] https://www.researchgate.net/publication/221012656_V-Measure_A_Conditional_Entropy-Based_External_Cluster_Evaluation_Measure © 2023 NTT Security Holdings All Rights Reserved

Evaluation

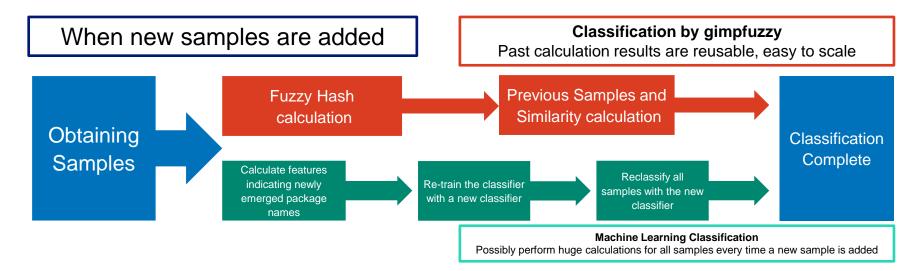
- What is the correct classification in the first place?
 - Minor variants and version differences in malware families
 - malware family
 - Rough malware features
- Evaluation by paloalto dataset ^[3]
 - Analyzed samples with families classified by YARA
 - Exclude samples that did not have a family name
 - Evaluate the classified results and family name with V-measure


SHA256,YARA Hit

- 74fc63cfc60f3f9dd3c0d43f59052ba189fa0544ccf79a8fdc99a90ffd6b0f0e,trojan_golang_hercules
- 3 99b89e9580af7fc70d8f6ac079358e6b716f7fd242a6547cf2ca932c4ad9c3df,trojan_golang_veil
- 4 c6d4fb8c4924863d61678df3aba57fe8efa19946f4c5ea678444ec3d7ada0152,trojan_golang_veil
- 5 f5798d675289fa5b96635635c94562b32c8ddb99ae12ad5af7b56cccd7c35062,N/A
- 6 738439ade9ae9e9e6d2f2aff3e63f4161722b3149bf7d02902715c127340c676,trojan_golang_veil
- 7 f25c859b8f2db7f9a7b40d9234885a1c0a8e2b36e091dbb88041f04f1c46c760,trojan_golang_chaos
- 8 e49125ac24e15a30619f07fe1ebc2dbce3c8137aabc86a88b5f1a57a89d03d5f,trojan_golang_infostealer
- 9 7a0598927921eb15980ee7d512fc2f20dd697642727eb4a38ba638bf4e7ce902,trojan_golang_goBot2
- 10 57ca3cb685eef7a1fa40f6bb42946adc3a018f8371d4d57204e98601f08d097d,N/A
- 11 53ded1467133e8c68c47aba33ea242a1751371031d727e8497a60bb9edb2abd3,trojan_golang_gobrut
- 12 2ad37fa2946780e99f049b8be7980c6a3483c91ccb3b90506e3fdcc629a69039,N/A
- 13 437e5762c1a814c5934d5d36f1e4a077b14b63be7ffce86999b5503ba34f1aa0,trojan_golang_veil
- 14 56b110a95c2b16784ba053c69f3ffcdbffcef1fdf42214f71d61b9e0d59b9a42,N/A
- 15 55f4f5be742d8557956af3278f01825fb02cb90fa2f27f0c1f5160322c26a1af,trojan_golang_veil
- 16 e15c2dad9d8e9c788cb394aa04d5e070a50512c25eceb4c5e1e99d69fb52d7ea,trojan_golang_veil
- 17 722f1c182bac229812107b6ab87853f886ff5c1f96fbdd343dc1847667fb7f79,trojan_golang_veil
- 18 d69f4caf27097e9a8d7241aa1334fa790d4f5a5708de12a1b8aabd5239724cd8,trojan_golang_veil
- 19 c680a89e218c74bde438119f9f3112c8725be59956a5fc3e53812165bfe556d2,N/A

Evaluation

- paloalto data set
 - Number of samples: 10,700
 - Number of samples downloadable from VT: 7,088
 - Of which, family name is indicated : 5,808
- Evaluation by V-measure
 - Evaluation of classification assuming that the family is correct
 - Best classification accuracy at a threshold of about 70~80



Advantages of Our Methods

- Advantages of gimpfuzzy's similarity-based clustering compared to machine learning
 - Low calculational complexity
 - Less susceptible to time variation

Applying to "Wild" Binaries

The Rule for Wild Mal-Gopher Families.

Applying to "Wild" Binaries

• Clustering evaluation using actual observed "wild" samples

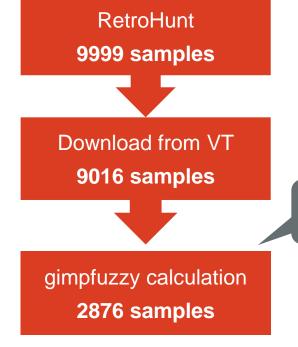
Evaluation using analyzed samples

- Classify only samples identified as malware
- Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-todate samples

- Includes samples not identified as malware
- Evaluate use in actual operations

Collecting Wild Binaries


- Download the samples that matched the following YARA with VT's Retrohunt
 - Samples that matched Windows binaries made by golang

```
rule go_language_pe
{
    strings:
        $go1 = "go.buildid" ascii wide
        $go2 = "go.buildi¥" ascii wide
        $go3 = "Go build ID:" ascii wide
        $go4 = "Go buildinf:"
        $go5 = "runtime.cgo"
        $go6 = "runtime.go"
        $go7 = "GOMAXPRO"
        $str1 = "kernel32.dll" nocase
        CONDITIONS:
        uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 2 of ($go*) and all of ($str*)
}
```

Collecting Wild Binaries

• Sample collection results

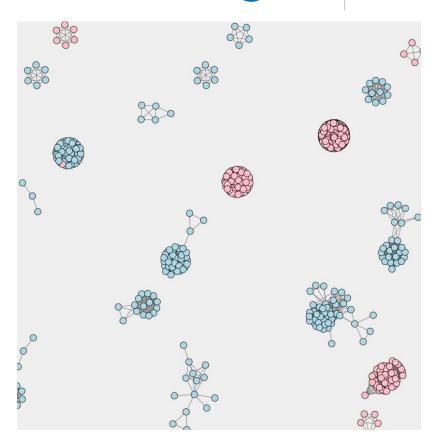
- Samples collected by Retrohunt (Approximately the last 3 months from 2022/12)
- Downloaded samples without duplicates such as Subfile

In case of insufficient bytes of ssdeep input Can be improved by using TLSH, etc.

- Samples for which pcIntab analysis + gimpfuzzy calculation was possible
- UPX are unpacked and analyzed

© 2023 NTT Security Holdings All Rights Reserved

Clustering Result


• Created 1093 clusters for 2867 samples

Clustering Result

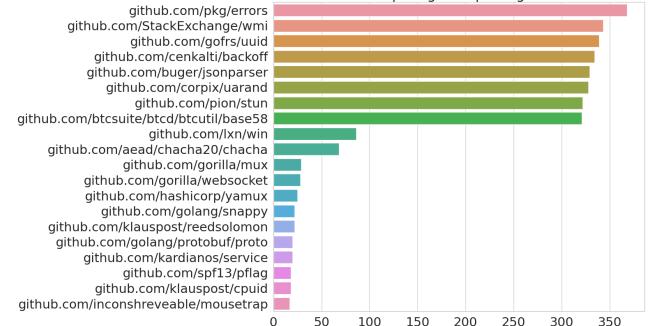
- Cluster Visualization
 - Implemented with Python's bokeh.io
 - Create interactive "moveable" graphs
 - Red node have 10 or more malignant determinations by VT

Demonstration : Cluster Visualization

Demonstration

© 2023 NTT Security Holdings All Rights Reserved

Case Study 1 / GitHub Packages

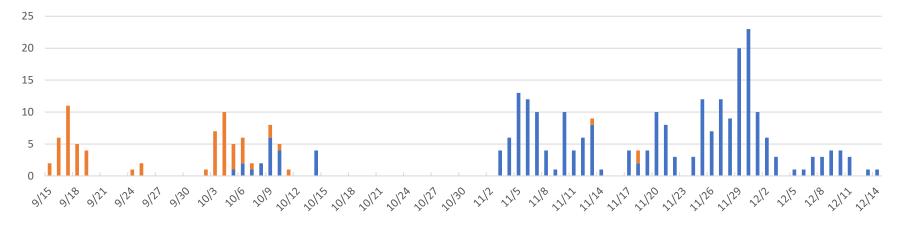


Security Holdings

- Golang can specify github repository for packages
- Focused on samples with more than 10 malignant determinations, 705 repository names recovered.
 - Including repositories that are considered private.
- Interesting repository name restored
 - Packages that generate random UAs (corpix/uarand etc.)
 - Packages that conduct Process Invoking (inconshreveable/mousetrap, etc.)
 - Malware creation frameworks (tiagorlampert/CHAOS, etc.)
 - Multi-hop proxies (Dliv3/Venom, etc.)
 - Post-Exploitation framework (Ne0nd0g/merlin, etc.)

Case Study 1 / GitHub Packages

Top 20 github repositories that appeared in malignant samples


Top 20 github packages

Security Holdinas

Case Study 2 : Detecting Additional Malware Features

- Detect small changes in GimpFuzzy values in clusters of malignant samples and observe temporal changes
 - 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZIXCPINvxtWrX7G/VAmWeEX
 - 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZIXCPINvxtWrX7G/V3mWeEX

Case Study 2: Detecting malware functionality additions

- Changed functions also changed logic.
 - Function name that was changed
 - 768:~VAmWeEX
 - $\rightarrow application/pesignaturetest/wincert.GetPostalCode$
 - 768:~V3mWeEX
 - \rightarrow application/pesignaturetest/wincert.Extract

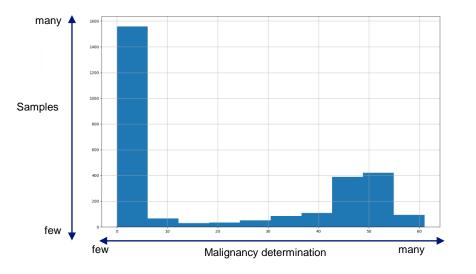
TT Security Holdings

Case Study 2: Detecting malware functionality additions

Security Holdings

• Some functions with unchanged function names have logic changes

	Similarity 🗚	Confidence	Address	Address Primary Name Type Address Secondary Name		Туре	Basic Blocks		Jumps					
4	0.26	0.98	006A4080	main_reportInstallFailure	No	006A3DC0	main_reportInstallFailure	No	0	10	58	4	9	84
Å	0.45	0.97	0069DA10	main_getCampaignID	No	0069D790	main_getCampaignID	No	11	3	2	15	3	2
Å	0.81	0.96	0067B610	application_pesignature	Normal	0067B610	application_pesignature	Normal	7	39	0	22	32	13
Å	0.86	0.97	006B01B0	main_extractDistributor	Normal	006B05E0	main_extractDistributor	Normal	0	10	2	1	11	3
å	0.91	0.99	006943D0	main_initializeConfig	Normal	006941D0	main_initializeConfig	Normal	0	21	3	2	22	6


• main_reportInstllFailure is added to the communication functionality.

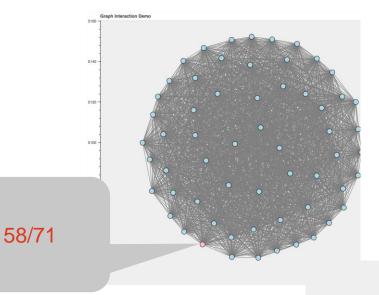

```
v42 = (http_Request *)net_http_NewRequestWithContext(
234
                                (int)&go itab ptr context emptyCtx comma ptr context Context,
236
                                 dword C76630.
                                 (int)"POSTQEMU",
237
238
                                 4.
                                (int)"https://fulusus.com/api/install-failure",
239
240
                                 39,
241
                                 v39,
242
243
        if ( !v43 )
244
245
         Header = (runtime hmap *)v42->Header;
         v56 = net_textproto_CanonicalMIMEHeaderKey((int)"Content-Type", 12);
246
247
         v55 = ( DWORD *)runtime newobject((int)&RTYPE 1 string);
          v55[1] = 33;
248
249
          *v55 = "application/x-www-form-urlencoded";
```

Case Study ③ : Legitimate Files

- In reality, legitimate files dominate.
 - Same for samples submitted to VT.
 - Is clustering of regular files possible?

Case Study ③ : Legitimate Files

Security Holdings


- Even samples that appear to be legitimate files can cluster.
 - samples submitted to VT are not necessarily only malignant files

									88
gimpfuzzy	cluster	last_submission_date	size	type_description	malicious	undetected		~	\mathbf{U}
3072:ZVZoThQpAM+mBL+5CR61yLR2Mr8tA4ICAluEbXDbK	106	2022-08-23 17:29:28	27937584	Win32 EXE	0	70		dif-	
${\tt 3072:} ZVZoThQpAM+mBL+5CR61yLR2Mr8uA4ICAluybXDbK}$	106	2022-08-29 10:48:57	27937072	Win32 EXE	0	69	C C C C C C C C C C C C C C C C C C C	YOD	
3072:ZVZoThQpAM+mBL+5CR61yLR2Mr8uA4ICAluhbXDbK	106	2022-09-02 02:07:33	27938096	Win32 EXE	0	69			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-05 12:12:53	27936048	Win32 EXE	0	70			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4lCAluwbXRb1	106	2022-09-06 05:52:38	27913216	Win32 EXE	2	68	h	ADD	
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4lCAluwbXRb1	106	2022-09-08 11:21:42	27940144	Win32 EXE	0	70	K .		
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-14 07:23:13	27940144	Win32 EXE	0	70			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-16 09:19:15	27940136	Win32 EXE	0	70		K K K	
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-16 13:15:25	27940136	Win32 EXE	0	69		40	
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-18 12:38:06	27936048	Win32 EXE	0	70			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-19 07:44:26	27940144	Win32 EXE	0	71			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-19 17:28:46	27940128	Win32 EXE	0	61			
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-21 05:35:09	27940128	Win32 EXE	0	70	00		
3072:ZVZoThQpAM+zBL+5CR61yLR2Mr8uA4ICAluwbXRb1	106	2022-09-28 16:48:43	27917312	Win32 EXE	1	69			00
									000

Case Study ④ : **Floxif**

- Mixed clusters of malignant / benign determinations
 - Even though gimpfuzzy is similar, malignancy judgments vary widely within clusters

Case Study (4) : **Floxif**

- Highly malicious samples lurking in legitimate file clusters
 - We found a highly malignant Floxif sample that mimicked the following program
 - psiphone-tunnel-core
 - Acronis Cyber Protect
 - It is difficult to determine malignancy/benignity in some samples with unsupervised clustering alone
 - Correct results as sample profiling

4	2022-09-09 20:21:30	15857968	Win32 EXE	0	63
4	2022-09-10 08:11:54	15857968	Win32 EXE	0	70
4	2022-09-10 10:48:23	15857968	Win32 EXE	0	70
4	2022-09-10 13:50:39	15936247	Win32 EXE	58	13
4	2022-09-11 18:54:17	15857968	Win32 EXE	0	70
4	2022-09-12 07:56:33	15857968	Win32 EXE	0	70
4	2022-09-12 14:09:19	15857968	Win32 EXE	0	65
4	2022-09-12 21:44:51	16389424	Win32 EXE	0	70
4	2022-09-13 04:48:15	15857968	Win32 EXE	0	70
4	2022-09-13 19:51:55	15857968	Win32 EXE	0	70
4	2022-09-13 22:13:20	15857968	Win32 EXE	0	70

a7ecbdd7438b18e46543d	0df291c2ba939404b6371e7a47996b143274a457f98		۹ 🛧	Sign in Sign up
58	() 58 security vendors and no sandboxes flagged this file as malicious			c X
? × Community v Score v	a7ecbdd7438b18e46543c0dt291c2ba83840455371s7a7347995b143274a457598 C0a46846dd844e611146846e23819 virus (parking paras	15.20 MB Size	2022-09-11 20:45:10 UTC 20 days ago	EXE
DETECTION Security Vendors' Ana	DETAILS RELATIONS BEHAVIOR COMMUNITY			
Acronis (Static ML)	① Suspicious	Ad-Aware	() Win32.Floxif.A	
AhnLab-V3	Win32/Fixtlo.GEN	Alibaba	() Virus:Win32/Floxif.gen1	
ALYac	() Win32 Floxil A	Antiy-AVL	() Trojan/Generic.ASVirus.178	
Arcabit	Win32.Floxil.A	Avast	() Win32:FloxLib-A [Trj]	
AVG	Win32:FloxLib-A [Trj]	Avira (no cloud)	() W32/Floxif.hdc	
Baidu	(1) Win32.Virus.Floxif.a	BitDefender	() Win32.Floxif.A	
BitDefenderTheta	Al:FileInfector:207622A70E	Bkav Pro	() W32.FloxitNV.PE	
ClamAV	() Win. Virus. Pioneer-9111434-0	Camodo	() Virus.Win32.Floxif.A@7h5wha	
Crossel@trika.Ealcost	 Minimilieirus confidence 90% /Wi 	Orberesson	Malirine Adding	

© 2023 NTT Security Holdings All Rights Reserved

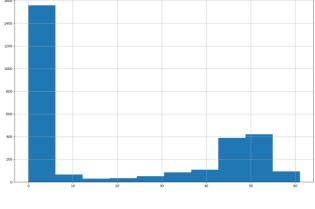
- Existence of samples for which gimpfuzzy cannot be calculated
 - Lower limit of ssdeep input size exists (>4KB). It can be replaced by TLSH, etc.
 - Analysis is interfered by packing, obfuscation, etc.

- Limitations of "unsupervised" classification
 - It is difficult to determine malignant / benign.
 - Separated by clusters to some extent, but some clusters with malignant and benign samples still exist.

Conclusions

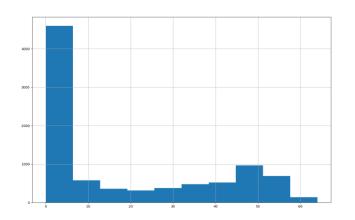
The Rule for Wild Mal-Gopher Families.

- Presented on the following topics to apply gimpfuzzy to actual operations
 - YARA module implementation
 - Accuracy evaluation using analyzed samples
 - Application to samples submitted to VirusTotal


• YARA module and visualization scripts are to be released.

Appendix

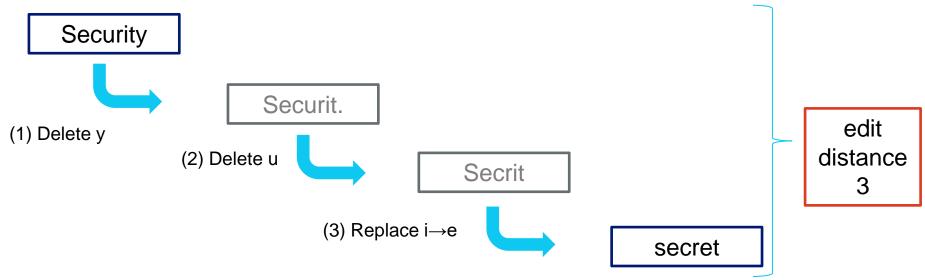
The Rule for Wild Mal-Gopher Families.


Appendix 1

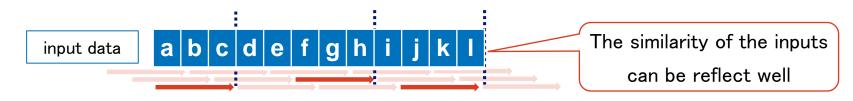
- Number of malignancy determinations for samples collected in VT
 - Overwhelmingly less malignant files

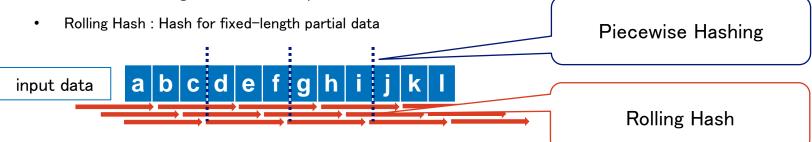
Analyzed samples analyzed : 2835

Unanalyzed samples : 9999 samples



• Edit Distance (Levenshtein Distance)


- Classic method of showing string similarity
- Minimum number of times one string can be converted to the other by inserting, deleting, or replacing a single character.



Appendix 3

- ssdeep (Context Triggered Piecewise Hashing)
 - Piecewise Hashing : Hash of divided part of the data

- When the Rolling Hash reaches a certain value, it is split there and Piecewise Hashing is performed.
 - The triggering value is calculated based on the input data length

