
The Rule for Wild Mal-Gopher Families.

NTT Security Japan

Kazuya Nomura

Sachito Hirao

© NTT Security Holdings All Rights Reserved

Agenda

1. Introduction

2. Creating YARA Module

3. Clustering Evaluation

4. Applying to "Wild" Binaries

5. Conclusions

Appendix

2023

© NTT Security Holdings All Rights Reserved

1. Introduction

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

About Us

Kazuya Nomura

SOC analyst at NTT Security Japan. His main work is alert monitoring with IPS/IDS/EDR. He

has contributed articles on malware analysis and data visualization in NTT Security Japan.

He is a recipient of the MWS2020 paper award and an outstanding alumnus of

SecHack2020.

Sachito Hirao

SOC analyst at NTT Security Japan. Formerly an infrastructure engineer in the

financial sector.

At SOC, he was in charge of NW/EDR alert monitoring as well as malware analysis.

2023

© NTT Security Holdings All Rights Reserved

Golang Malware

• Golang malware family grows year after year

• Complexity of analysis due to characteristic structure

• Buildable for multiple platforms

• The number of diverse samples will continue to increase

• Increased efficiency of classification

• Increased efficiency of analysis by attributing to previously analyzed samples

2023

Advantages for the attacker

Improved efficiency of Golang malware classification and analysis

© NTT Security Holdings All Rights Reserved

Golang Malware

• Various malware creation frameworks exist for Golang

• Coldfire

• CHAOS

• EGESPLOIT

• ARCANUS

• Many frameworks in

active development

2023

https://github.com/redcode-labs/Coldfire https://github.com/tiagorlampert/CHAOS

© NTT Security Holdings All Rights Reserved

gimphash

• Golang binary version’s imphash

• Golang binaries have a platform-independent structure called pclntab

• Dependent package names, function names, etc. can be restored

• gimphash is a partial SHA256 hash of the recovered package/function name

• Uniquely capable of representing the functionality on which malware depends, but similarity comparisons

of different hashes are not possible

2023

github.com/example/ExampleFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

gimphash

pclntab sha256

e3b0c44298...

© NTT Security Holdings All Rights Reserved

gimpfuzzy

• gimphash to fuzzy hash

• SHA256 output varies greatly if input differs by even 1 bit

• Fuzzy Hash computes a "rough" hash that returns similar values for similar inputs

• gimpfuzzy uses ssdeep. Similarity between samples can be measured.

2023

github.com/example/ExampleFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

gimpFuzzypclntab

github.com/example/AnotherFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

3:j4dwGIVWYvgxN4dwGIV3M

NWzYKKKvTKrs:j4mGggximG

CMcTjKrs

3:j4dwGIV++RSXzM9xN4dwGIV3M

NWzYKKKvTKrs:j4mGduSXg9xim

GCMcTjKrs

Allows comparison

of similarities

© NTT Security Holdings All Rights Reserved

Motivation & Goals

1. YARA module implementation

• Enables fast and easy classification of large sample groups

2. Accuracy evaluation using analyzed samples

• Consider optimal parameters for family classification

3. Applied to samples submitted to VirusTotal

• Application to unanalyzed “wild” samples

• Discussion of the latest Golang malware applications

2023

© NTT Security Holdings All Rights Reserved

Difference Between Previous Presentation

• CODE BLUE 2022

“Who is the Mal-Gopher? - Implementation and Evaluation of “gimpfuzzy” for Go

Malware Classification”

• First to propose a method for applying Fuzzy Hash to gimphash

• Analyzed samples are classified by gimphash and evaluated the accuracy.

2023

• JSAC2023 “The Rule for Wild Mal-Gopher Families.”

Implementation and evaluation with a focus on application in actual operations and analysis

• Creation of a YARA module that allows classification of samples for implementation.

• Application and evaluation of “wild” unanalyzed samples submitted to VT

© NTT Security Holdings All Rights Reserved

Creating YARA Module

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

YARA

• Toolkit for malware classification being developed by VT[1]

• By writing classification rules, only samples that satisfy the rules can be searched

• High speed because it is implemented with C

• Various modules exist depending on the file structure

• The following modules do not exist

• Module for handling Golang binaries

• Module for Fuzzy Hashing and string similarity calculation

• To make it easier to classify samples by gimpfuzzy,

YARA module was newly impremented

122023

[1] https://github.com/VirusTotal/yara

© NTT Security Holdings All Rights Reserved

Creating YARA Module

Implement the following two

• go module : analyzes PE binaries made by golang

• go.gimpfuzzy() : gimpfuzzy calculate from extracted function name

• go.function_names : sort strings of extracted function names

• fuzzy module : calculate similarity of Fuzzy Hash

• fuzzy.fuzzy() : fuzzy hash calculation from argument string

• fuzzy.score() :computes score based on the edit distance between two argument strings

132023

© NTT Security Holdings All Rights Reserved

Writing YARA Rule

142023

• Example of YARA rules

• Enables searches based on similarity of samples based on gimpfuzzy

import "go"
import "fuzzy"
import "pe"

rule GoFuzzyTest
{
CONDITIONS:
pe.is_pe and
fuzzy.score(go.gimpfuzzy(), "96:O5iaa8UdGAq27F92...")> 80

}
gimpfuzzy

calculation

results for

samples

Compare

Fuzzy Hash

Similarity

Score

Calculation

The similarity is over 80.

Search for samples

© NTT Security Holdings All Rights Reserved

Using YARA Module

152023

• Enables sample search based on gimpfuzzy similarity

root@1f06b9d1f716:/malwares# yara /test.yara -r .
GoFuzzyTest . /Valhalla_hktl_htran_golang/4550635143c9997d5499d1d4a4c860126ee9299311fed0f85df9bb304dca81ff
GoFuzzyTest . /Valhalla_hktl_htran_golang/645622a85906da6304315ae9444046f2310609da933f53e87b54fbb206b53e3e
GoFuzzyTest . /Valhalla_hktl_htran_golang/4e5468e36dc7bc5601384f22c032f990f2e8454d27f6b11e8e897fb0c6c5e0e5
GoFuzzyTest . /Valhalla_hktl_htran_golang/65cfa86dec6f19cdbf5f9641ab835af023d34fa23b0e31a9f9b66c93a221d7a2
GoFuzzyTest . /Valhalla_hktl_htran_golang/72549bdc9e857162603f3ce90f1bfc8eb761e7e9f399a24a2bba47468b6edfe3
GoFuzzyTest . /Valhalla_hktl_htran_golang/91bce99e792db5c3da42da3f01f50a1021f9538b78f70544bedc9ca7508ce54e
GoFuzzyTest . /Valhalla_hktl_htran_golang/d45a6f12d5956f0fb8ad17727c717b621e3be06fabf9ff27058cb86f8f108b7d
GoFuzzyTest . /Valhalla_hktl_htran_golang/e70e0c8fb2727b35b65596a6e2838abd0b5f7351cdd4031b9971b91c22f5d15c

© NTT Security Holdings All Rights Reserved

Developing YARA Module

162023

• Implement the following functions

function (e.g.

math,

programming,

programing)

module_initialize Initialization process for YARA module

module_finalize YARA module termination process

module_load Processing when the module reads a file

Implement the actual parsing logic for the file

module_unload Post-processing when the module reads a file

Delete hash tables, open structures, etc.

Main

imple

ment

ation

© NTT Security Holdings All Rights Reserved

Developing YARA Module

172023

• It is important that each function returns a corresponding error when an

exception occurs.

• In some cases, the YARA side will post-process appropriately.#ifndef ERROR_SUCCESS
#define ERROR_SUCCESS 0
#endif

#define ERROR_INSUFFICIENT_MEMORY 1
#define ERROR_COULD_NOT_ATTACH_TO_PROCESS 2
#define ERROR_COULD_NOT_OPEN_FILE 3
#define ERROR_COULD_NOT_MAP_FILE 4
#define ERROR_INVALID_FILE 6
#define ERROR_CORRUPT_FILE 7

success
process
ing

error
handling

© NTT Security Holdings All Rights Reserved

Demonstration : YARA Module

Demonstration

2023

© NTT Security Holdings All Rights Reserved

Clustering Evaluation

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

Clustering Evaluation

• Clustering evaluation using actual observed “wild” samples

202023

Evaluation using analyzed samples

• Classify samples identified as malware only

• Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-to-

date samples

• Includes samples not identified as malware

• Evaluate use in actual operations

© NTT Security Holdings All Rights Reserved

Overview of Clustering Methods

• gimpfuzzy similarity-based clustering

1. Calculate gimpfuzzy of samples for clustering

2. Calculate gimpfuzzy similarity between samples for clustering

3. Edge-connect samples with similarity above a threshold

4. Connected samples are considered as a cluster.

212023

A

B

C

D

E

f
80

30

50

10

20

100

60

6010

70

Cluster 1

Cluster 2

Cluster 3

When samples with threshold

≥ 70 are connected

© NTT Security Holdings All Rights Reserved

Scoring Matrix

• Calculate scores for all combinations of samples

• Scoring of string similarity from 0~100 based on edit distance

• Create an “adjacency matrix” and consider an undirected graph

222023

A B C D E f

A 0 80 0 0 30 50

B 80 0 0 10 20 0

C 0 0 0 100 60 60

D 0 10 100 0 70 10

E 30 20 60 70 0 0

f 50 00 60 10 0 0

Color corresponds to family

A

B

C

D

E

f

80
30

50

10

20

100

60

6010

70

© NTT Security Holdings All Rights Reserved

How to Evaluate Clustering

• How to cut the threshold: what constitutes good clustering?

• Low threshold case: a small number of large clusters are formed

• High threshold case: a large number of small clusters are formed

232023

A

B

C

D

E

f

80
30

50

10

20

100

60

6010

A

B

C

D

E

f

80
30

50

10

20

100

60

6010

Threshold ≥ 30

◎Many samples can be tied together (integrity ↑)

Decrease in classification accuracy within a △ cluster

(homogeneity ↓)

Threshold ≥ 90

◎ High classification accuracy within clusters (homogeneity ↑)

△ Clusters are too separated to be meaningful (integrity ↓)

70 70

Cluster 1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

© NTT Security Holdings All Rights Reserved

How to Evaluate Clustering

• Harmonic mean is considered in trade-off between the two

• Using V-measure[2] implemented in scikit-learn for evaluation

• Homogeneity Score ℎ: The higher the percentage of a single correct answer group in a given cluster, the score is better

• Integrity score 𝑐 : The fewer cluster into which a given group of correct answers is classified, the score is better

242023

𝑉𝛽 = 1 + 𝛽 ⋅
ℎ ⋅ 𝑐

ℎ + 𝑐

[2] https://www.researchgate.net/publication/221012656_V-Measure_A_Conditional_Entropy-Based_External_Cluster_Evaluation_Measure

© NTT Security Holdings All Rights Reserved

Evaluation

• What is the correct classification in the first place?

• Minor variants and version differences

in malware families

• malware family

• Rough malware features

• Evaluation by paloalto dataset [3]

• Analyzed samples with families

classified by YARA

• Exclude samples that did not have a family name

• Evaluate the classified results and family name

with V-measure

252023

[3]https://github.com/pan-unit42/iocs/blob/master/golang_malware_results.csv

Matches.

YARA rules

sample

SHA256

© NTT Security Holdings All Rights Reserved

Evaluation

• paloalto data set

• Number of samples: 10,700

• Number of samples downloadable from VT: 7,088

• Of which, family name is indicated : 5,808

• Evaluation by V-measure

• Evaluation of classification assuming that

the family is correct

• Best classification accuracy at

a threshold of about 70~80

262023

© NTT Security Holdings All Rights Reserved

Advantages of Our Methods

• Advantages of gimpfuzzy’s similarity-based clustering compared to machine learning

• Low calculational complexity

• Less susceptible to time variation

272023

When new samples are added

Obtaining

Samples

Fuzzy Hash

calculation

Previous Samples and

Similarity calculation

Re-train the classifier

with a new classifier

Calculate features

indicating newly

emerged package

names

Reclassify all

samples with the new

classifier

Classification

Complete

Machine Learning Classification

Possibly perform huge calculations for all samples every time a new sample is added

Classification by gimpfuzzy

Past calculation results are reusable, easy to scale

© NTT Security Holdings All Rights Reserved

Applying to “Wild” Binaries

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

Applying to "Wild" Binaries

• Clustering evaluation using actual observed "wild" samples

292023

Evaluation using analyzed samples

• Classify only samples identified as malware

• Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-to-

date samples

• Includes samples not identified as malware

• Evaluate use in actual operations

© NTT Security Holdings All Rights Reserved

Collecting Wild Binaries

• Download the samples that matched the following YARA with VT’s Retrohunt

• Samples that matched Windows binaries made by golang

302023

rule go_language_pe
{

strings:
$go1 = "go.buildid" ascii wide
$go2 = "go.buildi¥" ascii wide
$go3 = "Go build ID:" ascii wide
$go4 = "Go buildinf:"
$go5 = "runtime.cgo"
$go6 = "runtime.go"
$go7 = "GOMAXPRO"
$str1 = "kernel32.dll" nocase

CONDITIONS:
uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 2 of ($go*) and all of ($str*)

}

© NTT Security Holdings All Rights Reserved

Collecting Wild Binaries

• Sample collection results

312023

RetroHunt

9999 samples

Download from VT

9016 samples

gimpfuzzy calculation

2876 samples

• Samples collected by Retrohunt

(Approximately the last 3 months from 2022/12)

• Downloaded samples without duplicates

such as Subfile

• Samples for which pclntab analysis + gimpfuzzy

calculation was possible

• UPX are unpacked and analyzed

In case of insufficient bytes of ssdeep input

Can be improved by using TLSH, etc.

© NTT Security Holdings All Rights Reserved

Clustering Result

2023

• Created 1093 clusters for 2867 samples

© NTT Security Holdings All Rights Reserved

Clustering Result

2023

• Cluster Visualization

• Implemented with Python’s bokeh.io

• Create interactive “moveable” graphs

• Red node have 10 or more malignant

determinations by VT

© NTT Security Holdings All Rights Reserved

Demonstration : Cluster Visualization

Demonstration

2023

© NTT Security Holdings All Rights Reserved

Case Study 1 / GitHub Packages

• Golang can specify github repository for packages

• Focused on samples with more than 10 malignant determinations,

705 repository names recovered.

• Including repositories that are considered private.

• Interesting repository name restored

• Packages that generate random UAs (corpix/uarand etc.)

• Packages that conduct Process Invoking (inconshreveable/mousetrap, etc.)

• Malware creation frameworks (tiagorlampert/CHAOS, etc.)

• Multi-hop proxies (Dliv3/Venom, etc.)

• Post-Exploitation framework (Ne0nd0g/merlin, etc.)

352023

© NTT Security Holdings All Rights Reserved

Case Study 1 / GitHub Packages

2023

Top 20 github repositories that appeared in malignant samples

© NTT Security Holdings All Rights Reserved

Case Study 2 : Detecting Additional

Malware Features

• Detect small changes in GimpFuzzy values in clusters of malignant samples

and observe temporal changes

• 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZlXCPlNvxtWrX7G/VAmWeEX

• 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZlXCPlNvxtWrX7G/V3mWeEX

372023

0

5

10

15

20

25

© NTT Security Holdings All Rights Reserved

• Changed functions also changed logic.

• Function name that was changed

• 768:~VAmWeEX

→ application/pesignaturetest/wincert.GetPostalCode

• 768:~V3mWeEX

→ application/pesignaturetest/wincert.Extract

Case Study 2: Detecting malware

functionality additions

382023

wincert.GetPostarCode wincert.Extract

© NTT Security Holdings All Rights Reserved

Case Study 2: Detecting malware

functionality additions

• Some functions with unchanged function names have logic changes

• main_reportInstllFailure is added to the communication functionality.

392023

© NTT Security Holdings All Rights Reserved

Case Study ③ : Legitimate Files

• In reality, legitimate files dominate.

• Same for samples submitted to VT.

• Is clustering of regular files possible?

402023

Malignancy determinationfew many

Samples

many

few

© NTT Security Holdings All Rights Reserved

Case Study ③ : Legitimate Files

• Even samples that appear to be legitimate files can cluster.

• samples submitted to VT are not necessarily only malignant files

412023

© NTT Security Holdings All Rights Reserved

Case Study ④ : Floxif

• Mixed clusters of malignant /

benign determinations

• Even though gimpfuzzy is similar,

malignancy judgments vary widely

within clusters

422023

58/71

© NTT Security Holdings All Rights Reserved

Case Study ④ : Floxif

• Highly malicious samples lurking in legitimate file clusters

• We found a highly malignant Floxif sample that mimicked the following program

• psiphone-tunnel-core

• Acronis Cyber Protect

• It is difficult to determine malignancy/benignity in some samples with unsupervised clustering alone

• Correct results as sample profiling

432023

© NTT Security Holdings All Rights Reserved

Limitations

• Existence of samples for which gimpfuzzy cannot be calculated

• Lower limit of ssdeep input size exists (>4KB). It can be replaced by TLSH, etc.

• Analysis is interfered by packing, obfuscation, etc.

• Limitations of “unsupervised” classification

• It is difficult to determine malignant / benign.

• Separated by clusters to some extent, but some clusters with malignant and benign samples still

exist.

442023

© NTT Security Holdings All Rights Reserved

Conclusions

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

Conclusions

• Presented on the following topics to apply gimpfuzzy to actual operations

• YARA module implementation

• Accuracy evaluation using analyzed samples

• Application to samples submitted to VirusTotal

• YARA module and visualization scripts are to be released.

462023

© NTT Security Holdings All Rights Reserved

Appendix

The Rule for Wild Mal-Gopher Families.

2023

© NTT Security Holdings All Rights Reserved

Appendix 1

• Number of malignancy determinations for samples collected in VT

• Overwhelmingly less malignant files

482023

Analyzed samples

analyzed : 2835
Unanalyzed samples :

9999 samples

© NTT Security Holdings All Rights Reserved

Appendix 2

• Edit Distance (Levenshtein Distance)

• Classic method of showing string similarity

• Minimum number of times one string can be converted to the other by inserting, deleting, or

replacing a single character.

492023

secret

Security

Securit.

Secrit

(1) Delete y

(2) Delete u

(3) Replace i→e

edit

distance

3

© NTT Security Holdings All Rights Reserved

a b c d e f g h i j k l

Appendix 3

• ssdeep (Context Triggered Piecewise Hashing)
• Piecewise Hashing : Hash of divided part of the data

• Rolling Hash : Hash for fixed-length partial data

• When the Rolling Hash reaches a certain value, it is split there and Piecewise Hashing is performed.

• The triggering value is calculated based on the input data length

2022

Piecewise Hashing

Rolling Hash

The similarity of the inputs

can be reflect well

input data

input data

50

a b c d e f g h i j k l

	スライド 1: The Rule for Wild Mal-Gopher Families.
	スライド 2: Agenda
	スライド 3: 1. Introduction
	スライド 4: About Us
	スライド 5: Golang Malware
	スライド 6: Golang Malware
	スライド 7: gimphash
	スライド 8: gimpfuzzy
	スライド 9: Motivation & Goals
	スライド 10: Difference Between Previous Presentation
	スライド 11: Creating YARA Module
	スライド 12: YARA
	スライド 13: Creating YARA Module
	スライド 14: Writing YARA Rule
	スライド 15: Using YARA Module
	スライド 16: Developing YARA Module
	スライド 17: Developing YARA Module
	スライド 18: Demonstration : YARA Module
	スライド 19: Clustering Evaluation
	スライド 20: Clustering Evaluation
	スライド 21: Overview of Clustering Methods
	スライド 22: Scoring Matrix
	スライド 23: How to Evaluate Clustering
	スライド 24: How to Evaluate Clustering
	スライド 25: Evaluation
	スライド 26: Evaluation
	スライド 27: Advantages of Our Methods
	スライド 28: Applying to “Wild” Binaries
	スライド 29: Applying to "Wild" Binaries
	スライド 30: Collecting Wild Binaries
	スライド 31: Collecting Wild Binaries
	スライド 32: Clustering Result
	スライド 33: Clustering Result
	スライド 34: Demonstration : Cluster Visualization
	スライド 35: Case Study 1 / GitHub Packages
	スライド 36: Case Study 1 / GitHub Packages
	スライド 37: Case Study 2 : Detecting Additional Malware Features
	スライド 38: Case Study 2: Detecting malware functionality additions
	スライド 39: Case Study 2: Detecting malware functionality additions
	スライド 40: Case Study ③ : Legitimate Files
	スライド 41: Case Study ③ : Legitimate Files
	スライド 42: Case Study ④ : Floxif
	スライド 43: Case Study ④ : Floxif
	スライド 44: Limitations
	スライド 45: Conclusions
	スライド 46: Conclusions
	スライド 47: Appendix
	スライド 48: Appendix 1
	スライド 49: Appendix 2
	スライド 50: Appendix 3

