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1. Introduction

The Rule for Wild Mal-Gopher Families. 
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Golang Malware

• Golang malware family grows year after year

• Complexity of analysis due to characteristic structure

• Buildable for multiple platforms

• The number of diverse samples will continue to increase

• Increased efficiency of classification

• Increased efficiency of analysis by attributing to previously analyzed samples

2023

Advantages for the attacker

Improved efficiency of Golang malware classification and analysis
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Golang Malware

• Various malware creation frameworks exist for Golang

• Coldfire

• CHAOS

• EGESPLOIT

• ARCANUS

• Many frameworks in 

active development

2023

https://github.com/redcode-labs/Coldfire https://github.com/tiagorlampert/CHAOS
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gimphash

• Golang binary version’s imphash

• Golang binaries have a platform-independent structure called pclntab

• Dependent package names, function names, etc. can be restored

• gimphash is a partial SHA256 hash of the recovered package/function name

• Uniquely capable of representing the functionality on which malware depends, but similarity comparisons 

of different hashes are not possible

2023

github.com/example/ExampleFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

gimphash

pclntab sha256

e3b0c44298...
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gimpfuzzy

• gimphash to fuzzy hash

• SHA256 output varies greatly if input differs by even 1 bit

• Fuzzy Hash computes a "rough" hash that returns similar values for similar inputs

• gimpfuzzy uses ssdeep. Similarity between samples can be measured.

2023

github.com/example/ExampleFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

gimpFuzzypclntab

github.com/example/AnotherFunction

github.com/example/Malicious

os.Getenv

Crypto/sha256/New

...

3:j4dwGIVWYvgxN4dwGIV3M

NWzYKKKvTKrs:j4mGggximG

CMcTjKrs

3:j4dwGIV++RSXzM9xN4dwGIV3M

NWzYKKKvTKrs:j4mGduSXg9xim

GCMcTjKrs

Allows comparison 

of similarities
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Motivation & Goals

1. YARA module implementation

• Enables fast and easy classification of large sample groups

2. Accuracy evaluation using analyzed samples

• Consider optimal parameters for family classification

3. Applied to samples submitted to VirusTotal

• Application to unanalyzed “wild” samples

• Discussion of the latest Golang malware applications

2023
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Difference Between Previous Presentation

• CODE BLUE 2022

“Who is the Mal-Gopher? - Implementation and Evaluation of “gimpfuzzy” for Go 

Malware Classification”

• First to propose a method for applying Fuzzy Hash to gimphash

• Analyzed samples are classified by gimphash and evaluated the accuracy.

2023

• JSAC2023 “The Rule for Wild Mal-Gopher Families.”

Implementation and evaluation with a focus on application in actual operations and analysis

• Creation of a YARA module that allows classification of samples for implementation.

• Application and evaluation of “wild” unanalyzed samples submitted to VT
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Creating YARA Module

The Rule for Wild Mal-Gopher Families. 

2023
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YARA

• Toolkit for malware classification being developed by VT[1]

• By writing classification rules, only samples that satisfy the rules can be searched

• High speed because it is implemented with C

• Various modules exist depending on the file structure

• The following modules do not exist

• Module for handling Golang binaries

• Module for Fuzzy Hashing and string similarity calculation

• To make it easier to classify samples by gimpfuzzy,

YARA module was newly impremented

122023

[1] https://github.com/VirusTotal/yara
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Creating YARA Module

Implement the following two

• go module : analyzes PE binaries made by golang

• go.gimpfuzzy() : gimpfuzzy calculate from extracted function name

• go.function_names : sort strings of extracted function names

• fuzzy module : calculate similarity of Fuzzy Hash

• fuzzy.fuzzy() : fuzzy hash calculation from argument string

• fuzzy.score() :computes score based on the edit distance between two argument strings

132023
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Writing YARA Rule

142023

• Example of YARA rules

• Enables searches based on similarity of samples based on gimpfuzzy

import "go"
import "fuzzy"
import "pe"

rule GoFuzzyTest
{
CONDITIONS:
pe.is_pe and
fuzzy.score(go.gimpfuzzy(), "96:O5iaa8UdGAq27F92...")> 80

}
gimpfuzzy 

calculation 

results for 

samples

Compare

Fuzzy Hash

Similarity

Score 

Calculation

The similarity is over 80. 

Search for samples
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Using YARA Module

152023

• Enables sample search based on gimpfuzzy similarity

root@1f06b9d1f716:/malwares# yara /test.yara -r .
GoFuzzyTest . /Valhalla_hktl_htran_golang/4550635143c9997d5499d1d4a4c860126ee9299311fed0f85df9bb304dca81ff
GoFuzzyTest . /Valhalla_hktl_htran_golang/645622a85906da6304315ae9444046f2310609da933f53e87b54fbb206b53e3e
GoFuzzyTest . /Valhalla_hktl_htran_golang/4e5468e36dc7bc5601384f22c032f990f2e8454d27f6b11e8e897fb0c6c5e0e5
GoFuzzyTest . /Valhalla_hktl_htran_golang/65cfa86dec6f19cdbf5f9641ab835af023d34fa23b0e31a9f9b66c93a221d7a2
GoFuzzyTest . /Valhalla_hktl_htran_golang/72549bdc9e857162603f3ce90f1bfc8eb761e7e9f399a24a2bba47468b6edfe3
GoFuzzyTest . /Valhalla_hktl_htran_golang/91bce99e792db5c3da42da3f01f50a1021f9538b78f70544bedc9ca7508ce54e
GoFuzzyTest . /Valhalla_hktl_htran_golang/d45a6f12d5956f0fb8ad17727c717b621e3be06fabf9ff27058cb86f8f108b7d
GoFuzzyTest . /Valhalla_hktl_htran_golang/e70e0c8fb2727b35b65596a6e2838abd0b5f7351cdd4031b9971b91c22f5d15c
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Developing YARA Module

162023

• Implement the following functions

function (e.g. 

math, 

programming, 

programing)

module_initialize Initialization process for YARA module

module_finalize YARA module termination process

module_load Processing when the module reads a file

Implement the actual parsing logic for the file

module_unload Post-processing when the module reads a file

Delete hash tables, open structures, etc.

Main 

imple

ment

ation
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Developing YARA Module

172023

• It is important that each function returns a corresponding error when an 

exception occurs.

• In some cases, the YARA side will post-process appropriately.#ifndef ERROR_SUCCESS
#define ERROR_SUCCESS 0
#endif

#define ERROR_INSUFFICIENT_MEMORY 1
#define ERROR_COULD_NOT_ATTACH_TO_PROCESS 2
#define ERROR_COULD_NOT_OPEN_FILE 3
#define ERROR_COULD_NOT_MAP_FILE 4
#define ERROR_INVALID_FILE 6
#define ERROR_CORRUPT_FILE 7

success 
process
ing

error 
handling
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Demonstration : YARA Module

Demonstration

2023
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Clustering Evaluation

The Rule for Wild Mal-Gopher Families. 

2023



©          NTT Security Holdings All Rights Reserved

Clustering Evaluation

• Clustering evaluation using actual observed “wild” samples

202023

Evaluation using analyzed samples

• Classify samples identified as malware only

• Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-to-

date samples

• Includes samples not identified as malware

• Evaluate use in actual operations
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Overview of Clustering Methods

• gimpfuzzy similarity-based clustering

1. Calculate gimpfuzzy of samples for clustering

2. Calculate gimpfuzzy similarity between samples for clustering

3. Edge-connect samples with similarity above a threshold

4. Connected samples are considered as a cluster.

212023
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Scoring Matrix

• Calculate scores for all combinations of samples

• Scoring of string similarity from 0~100 based on edit distance

• Create an “adjacency matrix” and consider an undirected graph

222023

A B C D E f

A 0 80 0 0 30 50

B 80 0 0 10 20 0

C 0 0 0 100 60 60

D 0 10 100 0 70 10

E 30 20 60 70 0 0

f 50 00 60 10 0 0

Color corresponds to family
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How to Evaluate Clustering

• How to cut the threshold: what constitutes good clustering?

• Low threshold case: a small number of large clusters are formed

• High threshold case: a large number of small clusters are formed

232023

A

B

C

D

E

f

80
30

50

10

20

100

60

6010

A

B

C

D

E

f

80
30

50

10

20

100

60

6010

Threshold ≥ 30

◎Many samples can be tied together (integrity ↑)

Decrease in classification accuracy within a △ cluster 

(homogeneity ↓)

Threshold ≥ 90

◎ High classification accuracy within clusters (homogeneity ↑)

△ Clusters are too separated to be meaningful (integrity ↓)

70 70

Cluster 1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5



©          NTT Security Holdings All Rights Reserved

How to Evaluate Clustering

• Harmonic mean is considered in trade-off between the two

• Using V-measure[2] implemented in scikit-learn for evaluation

• Homogeneity Score ℎ: The higher the percentage of a single correct answer group in a given cluster, the score is better

• Integrity score 𝑐 : The fewer cluster into which a given group of correct answers is classified, the score is better

242023

𝑉𝛽 = 1 + 𝛽 ⋅
ℎ ⋅ 𝑐

ℎ + 𝑐

[2] https://www.researchgate.net/publication/221012656_V-Measure_A_Conditional_Entropy-Based_External_Cluster_Evaluation_Measure
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Evaluation

• What is the correct classification in the first place?

• Minor variants and version differences

in malware families

• malware family

• Rough malware features

• Evaluation by paloalto dataset [3]

• Analyzed samples with families

classified by YARA

• Exclude samples that did not have a family name

• Evaluate the classified results and family name

with V-measure

252023

[3]https://github.com/pan-unit42/iocs/blob/master/golang_malware_results.csv

Matches.

YARA rules

sample

SHA256
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Evaluation

• paloalto data set

• Number of samples: 10,700

• Number of samples downloadable from VT: 7,088

• Of which, family name is indicated : 5,808

• Evaluation by V-measure

• Evaluation of classification assuming that

the family is correct

• Best classification accuracy at

a threshold of about 70~80

262023
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Advantages of Our Methods

• Advantages of gimpfuzzy’s similarity-based clustering compared to machine learning

• Low calculational complexity

• Less susceptible to time variation

272023

When new samples are added

Obtaining 

Samples

Fuzzy Hash

calculation

Previous Samples and

Similarity calculation

Re-train the classifier 

with a new classifier 

Calculate features 

indicating newly 

emerged package 

names

Reclassify all 

samples with the new 

classifier

Classification 

Complete

Machine Learning Classification

Possibly perform huge calculations for all samples every time a new sample is added

Classification by gimpfuzzy

Past calculation results are reusable, easy to scale
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Applying to “Wild” Binaries

The Rule for Wild Mal-Gopher Families. 

2023



©          NTT Security Holdings All Rights Reserved

Applying to "Wild" Binaries

• Clustering evaluation using actual observed "wild" samples

292023

Evaluation using analyzed samples

• Classify only samples identified as malware

• Evaluate the validity and accuracy of clustering

Evaluation using unanalyzed, up-to-

date samples

• Includes samples not identified as malware

• Evaluate use in actual operations
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Collecting Wild Binaries

• Download the samples that matched the following YARA with VT’s Retrohunt

• Samples that matched Windows binaries made by golang

302023

rule go_language_pe
{

strings:
$go1 = "go.buildid" ascii wide
$go2 = "go.buildi¥" ascii wide
$go3 = "Go build ID:" ascii wide
$go4 = "Go buildinf:"
$go5 = "runtime.cgo"
$go6 = "runtime.go"
$go7 = "GOMAXPRO"
$str1 = "kernel32.dll" nocase

CONDITIONS:
uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 2 of ($go*) and all of ($str*)

}
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Collecting Wild Binaries

• Sample collection results

312023

RetroHunt

9999 samples

Download from VT

9016 samples

gimpfuzzy calculation

2876 samples

• Samples collected by Retrohunt

(Approximately the last 3 months from 2022/12)

• Downloaded samples without duplicates

such as Subfile

• Samples for which pclntab analysis + gimpfuzzy 

calculation was possible

• UPX are unpacked and analyzed

In case of insufficient bytes of ssdeep input

Can be improved by using TLSH, etc.
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Clustering Result

2023

• Created 1093 clusters for 2867 samples
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Clustering Result

2023

• Cluster Visualization

• Implemented with Python’s bokeh.io

• Create interactive “moveable” graphs

• Red node have 10 or more malignant 

determinations by VT



©          NTT Security Holdings All Rights Reserved

Demonstration : Cluster Visualization

Demonstration

2023
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Case Study 1 / GitHub Packages

• Golang can specify github repository for packages

• Focused on samples with more than 10 malignant determinations, 

705 repository names recovered.

• Including repositories that are considered private.

• Interesting repository name restored

• Packages that generate random UAs (corpix/uarand etc.)

• Packages that conduct Process Invoking (inconshreveable/mousetrap, etc.)

• Malware creation frameworks (tiagorlampert/CHAOS, etc.)

• Multi-hop proxies (Dliv3/Venom, etc.)

• Post-Exploitation framework (Ne0nd0g/merlin, etc.)

352023
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Case Study 1 / GitHub Packages

2023

Top 20 github repositories that appeared in malignant samples
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Case Study 2 : Detecting Additional 

Malware Features

• Detect small changes in GimpFuzzy values in clusters of malignant samples

and observe temporal changes

• 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZlXCPlNvxtWrX7G/VAmWeEX

• 768:KZZ99PdnRrLXT3UbhHPBj/RqJgvm+HHHyScP0OhZlXCPlNvxtWrX7G/V3mWeEX

372023

0

5

10

15

20

25



©          NTT Security Holdings All Rights Reserved

• Changed functions also changed logic.

• Function name that was changed

• 768:~VAmWeEX 

→ application/pesignaturetest/wincert.GetPostalCode

• 768:~V3mWeEX 

→ application/pesignaturetest/wincert.Extract

Case Study 2: Detecting malware 

functionality additions

382023

wincert.GetPostarCode wincert.Extract
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Case Study 2: Detecting malware 

functionality additions

• Some functions with unchanged function names have logic changes

• main_reportInstllFailure is added to the communication functionality.

392023
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Case Study ③ : Legitimate Files

• In reality, legitimate files dominate.

• Same for samples submitted to VT.

• Is clustering of regular files possible?

402023

Malignancy determinationfew many

Samples

many

few
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Case Study ③ : Legitimate Files

• Even samples that appear to be legitimate files can cluster.

• samples submitted to VT are not necessarily only malignant files

412023
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Case Study ④ : Floxif

• Mixed clusters of malignant / 

benign determinations

• Even though gimpfuzzy is similar,

malignancy judgments vary widely 

within clusters

422023

58/71
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Case Study ④ : Floxif

• Highly malicious samples lurking in legitimate file clusters

• We found a highly malignant Floxif sample that mimicked the following program

• psiphone-tunnel-core

• Acronis Cyber Protect

• It is difficult to determine malignancy/benignity in some samples with unsupervised clustering alone 

• Correct results as sample profiling

432023
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Limitations

• Existence of samples for which gimpfuzzy cannot be calculated

• Lower limit of ssdeep input size exists (>4KB). It can be replaced by TLSH, etc.

• Analysis is interfered by packing, obfuscation, etc.

• Limitations of “unsupervised” classification

• It is difficult to determine malignant / benign.

• Separated by clusters to some extent, but some clusters with malignant and benign samples still 

exist.

442023
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Conclusions

The Rule for Wild Mal-Gopher Families. 

2023
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Conclusions

• Presented on the following topics to apply gimpfuzzy to actual operations

• YARA module implementation

• Accuracy evaluation using analyzed samples

• Application to samples submitted to VirusTotal

• YARA module and visualization scripts are to be released.

462023
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Appendix

The Rule for Wild Mal-Gopher Families. 

2023
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Appendix 1

• Number of malignancy determinations for samples collected in VT

• Overwhelmingly less malignant files

482023

Analyzed samples 

analyzed : 2835 
Unanalyzed samples : 

9999 samples
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Appendix 2

• Edit Distance (Levenshtein Distance)

• Classic method of showing string similarity

• Minimum number of times one string can be converted to the other by inserting, deleting, or 

replacing a single character.

492023

secret

Security

Securit.

Secrit

(1) Delete y

(2) Delete u

(3) Replace i→e

edit 

distance

3
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a b c d e f g h i j k l

Appendix 3

• ssdeep (Context Triggered Piecewise Hashing) 
• Piecewise Hashing : Hash of divided part of the data 

• Rolling Hash : Hash for fixed-length partial data

• When the Rolling Hash reaches a certain value, it is split there and Piecewise Hashing is performed.

• The triggering value is calculated based on the input data length

2022

Piecewise Hashing

Rolling Hash

The similarity of the inputs

can be reflect well

input data

input data

50

a b c d e f g h i j k l
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