What We Can Do against the Chaotic A41APT Campaign

Hajime Yanagishita, Kiyotaka Tamada, You Nakatsuru, Suguru Ishimaru

2022/01/27

Who We Are

Hajime Yanagishita

Macnica

Kiyotaka Tamada

You Nakatsuru

Suguru Ishimaru

Kaspersky

Secureworks

Agenda

Recent A41APT campaign we've seen

- What A41APT Campaign is
- Continuous A41APT Campaign
 - Continued and Updated TTPs
 - News TTPs Observed in 2021
 - Attribution of The Threat Actor
- What We Can Do against the Chaotic A41APT Campaign

What A41APT Campaign is

A41APT Campaign

A sophisticated attack campaign revealed at JSAC 2021

- Period of activity
 - March 2019 to January 2021
- Target
 - Japan (Japanese companies and their overseas branches)
- Origin of the campaign name
 - Named after the actor's host name DESKTOP-A41UVJV used for remote connection

Distinguish attack campaign that threat actor intrudes via internet-facing system, deploy malware such as SigLoader/Sodamaster from others

TTPs Reported at JSAC2021

Continuous A41APT Campaign in 2021

Continuous A41APT Campaign in 2021

- Observed attacks against multiple organizations in Japan and branch offices
 - We investigated each different incident to disclose updated TTPs and discovered new TTPs

Public Information by Trend Micro

https://blog.trendmicro.co.jp/archives/29842

しかし最近観測されたSodaMasterのバックドアコマンドは、一部は未実装ですが、アルファベットの 「c」から「x」までサポートされていました。またコマンドの分岐処理は、switch文を使わずにループ 処理でコマンドハンドラを検索する変則的な手法が用いられていました。

「Jackpot」のCommunication Protocol

トレンドマイクロで観測したJackpotは、ハードコードされたURLへのPOSTリクエストのみを処理し ます。それ以外のメソッドによるリクエストに対しては、正規の応答に見せかけたレスポンスを返しま す。攻撃者クライアントは、後述する独自のメッセージパケットをカスタムBase64とRC4で暗号化し て送信します。この際、次のようなパスワードによる認証プロセスを経ることで、バックドア機能が 有効化され、以降のバックドア処理が可能になる仕組みになっていました。これは、不特定多数がア クセス可能な公開システムにJackpotを感染させることを想定し、意図しないリクエストを処理しない ための予防策と考えられます。

Continued and Updated TTPs

Continuous A41APT Campaign in 2021

Intrusion via VPN Devices

Observations in 2021

- Using known vulnerabilities
 - Pulse Connect Secure
 - FortiGate: CVE-2018-13379
 - Cisco AnyConnect: CVE-2020-3125
- Even if it's patched now, the credentials from back then might have been leaked

Note that we've only seen the host name "DESKTOP-O2KM1VL" already reported in 2021 (Never seen "DESKTOP-A41UVJV" - origin of the campaign name)

Tool Sets Used After Intrusion

- Following tools were found in the lateral movement stage
 - Mimikatz
 - secretdump.py
 - PsExec
 - \circ csvde
 - WinRAR
- The threat actor seems to use various tools as needed

Malware Updates

- SigLoader and SodaMaster are still used in 2021
 - Cobalt Strike, P8RAT and FYAntiLoader were not observed in 2021
- With some changes:
 - Tampering compile time
 - SigLoader: e.g. 2021/?? -> 2017/05
 - SodaMaster: e.g. 2021/04 -> 2012/10
 - Updates on major functions
 - SigLoader: decryption process
 - SodaMaster: commands and data format

SigLoader Execution Flow

Decryption Process of SigLoader

- Algorithm identifiers were changed from string to number
 - 0: AES
 - 1: DES
 - **3:** XOR
- The order of decrytpion algorithm is hardcoded

Decryption Process of SigLoader

- The AES mode was changed from CBC to ECB
- The AES key is the first 16 bytes from the hardcoded 32 bytes string

C_Rijndael_sbox dl	63h, 7Ch, 77h, 7Bh, 0F2h, 6Bh, 6Fh, 0C5h, 30h, 1, 67h
	; DATA XREF: aes_init_180001EE0+9Cto
db	2Bh, OFEh, OD7h, OABh, 76h, OCAh, 82h, OC9h, 7Dh, OFAh
db	59h, 47h, 0F0h, 0ADh, 0D4h, 0A2h, 0AFh, 9Ch, 0A4h, 72h
db	0C0h, 0B7h, 0FDh, 93h, 26h, 36h, 3Fh, 0F7h, 0CCh, 34h
db	0A5h, 0E5h, 0F1h, 71h, 0D8h, 31h, 15h, 4, 0C7h, 23h
db	0C3h, 18h, 96h, 5, 9Ah, 7, 12h, 80h, 0E2h, 0EBh, 27h
db	0B2h, 75h, 9, 83h, 2Ch, 1Ah, 1Bh, 6Eh, 5Ah, 0A0h, 52h
db	3Bh, 0D6h, 0B3h, 29h, 0E3h, 2Fh, 84h, 53h, 0D1h, 0
db	0EDh, 20h, 0FCh, 0B1h, 5Bh, 6Ah, 0CBh, 0BEh, 39h, 4Ah
db	4Ch, 58h, 0CFh, 0D0h, 0EFh, 0AAh, 0FBh, 43h, 4Dh, 33h
db	85h, 45h, 0F9h, 2, 7Fh, 50h, 3Ch, 9Fh, 0A8h, 51h, 0A3h
db	40h, 8Fh, 92h, 9Dh, 38h, 0F5h, 0BCh, 0B6h, 0DAh, 21h
db	10h, 0FFh, 0F3h, 0D2h, 0CDh, 0Ch, 13h, 0ECh, 5Fh, 97h
db	44h, 17h, 0C4h, 0A7h, 7Eh, 3Dh, 64h, 5Dh, 19h, 73h
db	60h, 81h, 4Fh, 0DCh, 22h, 2Ah, 90h, 88h, 46h, 0EEh
db	OB8h, 14h, ODEh, 5Eh, OBh, ODBh, OE0h, 32h, 3Ah, OAh
db	49h, 6, 24h, 5Ch, 0C2h, 0D3h, 0ACh, 62h, 91h, 95h, 0E4h
db	79h, 0E7h, 0C8h, 37h, 6Dh, 8Dh, 0D5h, 4Eh, 0A9h, 6Ch
db	56h, OF4h, OEAh, 65h, 7Ah, OAEh, <mark>8</mark> , OBAh, 78h, 25h
db	2Eh, 1Ch, 0A6h, 0B4h, 0C6h, 0E8h, 0DDh, 74h, 1Fh, 4Bh
db	OBDh, 8Bh, 8Ah, 70h, 3Eh, 0B5h, 66h, 48h, 3, 0F6h, 0Eh
db	61h, 35h, 57h, 0B9h, 86h, 0C1h, 1Dh, 9Eh, 0E1h, 0F8h
db	98h, 11h, 69h, 0D9h, 8Eh, 94h, 9Bh, 1Eh, 87h, 0E9h
db	OCEh, 55h, 28h, ODFh, 8Ch, 0A1h, 89h, 0Dh, 0BFh, 0E6h
db	42h, 68h, 41h, 99h, 2Dh, 0Fh, 0B0h, 54h, 0BBh, 16h

SodaMaster Evolution

We classified 20+ samples into 3 versions, and confirmed 6 activities from compile time and common features as follows

Comparison for Each Version of SodaMaster

* Light gray: Compile date might be tampered

	Vers	sion 1			Version 3			
Compile Date (Export Date)	2019/01/07 10:33:18	2016/07/28 23:34:54	2019/06/10 16:58:10	2020/10/202016/07/2810:46:4919:07:26		2012/10/13 12:00:07		
File Type	x86 DLL	x64 DLL		x64 DLL		x64 DLL		
Original DLL Name	httpsWin32.dll	httpsX64_d.dll	-	tcpcX64.dll				
Export Function	DLL	Entry	-	- DLLEntry				
Network API	wir	ninet			ws2_32			
Command	d	, S			c - x			
Anti-VM		/		-				
Addition of junk data	-		-	Using string length of collected PC info	Using GetTickCount	Using GetTickCount		

Changes of Loader Shellcode for SodaMaster

The basic implementation was not changed

\$MagicNumber \$EncDataSize \$RC4_Key	dq 0B14195F0B1419 dd 19A00h dq 26DBC48A6FB401 dq 875D06BEF01B75	SFh ECh 4h	 The magic bytes have been changed from version The size of data was increased depending the payload which was the updated SodaMaster 						
<pre>\$EncSodaMaster</pre>	db 0B7h db 0E4h	offset	data	description					
	db 78h ; x db 0A3h db 88h	0x000	90 90 90 90 90 90 90 90 90	magic bytes for Identification, this is used for comparision before data processing					
	db 0CDh	0x008	0x11600	Size of encrypted data, only this value (size) is observed					
	db 85h db 97h	0x00C	A9 5B 7B 84 9C CB CF E8 B6 79 F1 9F 05 B6 2B FE	16 bytes RC4 key (each sample has different key)					
		0x01C	C7 36 7E 93 D3 07 1E 86 23 75 10 49 C8 AD 01 9F [skipped]	Encrypted SodaMaster payload with RC4					

Command List of SodaMaster Version 3

% e, j, k, n-p, t-v are not Implemented
 % Red: Different analysis results from Trend Micro

Command	Description	Command	Description
с	Steals credentials of Outlook	I	Configures interval of C2 communications
d	Executes DLL (Specified export function)	m	Collects screenshot
f	Enables/Disables adding size info into sending	q	Enables key logging
	data	r	Disables key logging
g	Executes shellcode (No function table)	S	Executes shellcode (With function table)
h	Repeats sending source spoofed packet to specified destination (DoS?)	w	Shows string with MessageBox
i	Repeats sending 0x20000 bytes data padded with 0xCC (DoS?)	x	Exits process

Changes on C2 Command Execution of SodaMaster

The First Data Format Sent to SodaMaster C2

• Data chunk format

1 Byte	1 Byte	Length of data
ID	Size of data (If data length is variable)	Data

• The raw data before encryption

03	ØA	6A	00	61	00	6D	00	65	00	73	00	07	1E	44	00	j.a.m.e.sD.
45	00	53	00	4B	00	54	00	4F	00	50	00	2D	00	30	00	E.S.K.T.O.P0.
55	00	37	00	45	00	38	00	55	00	43	00	04	08	17	00	U.7.E.8.U.C
00	02	40	09	ØA	00	62	4A	01	00	30	00	05	11	32	30	@bJ020
32	31	2F	31	32	2F	38	20	31	36	ЗA	34	30	ЗA	31	06	21/12/8.16:40:1.
ØB	47	4E	53	76	62	34	33	41	32	78	6F	08	C0	A8	64	.GNSvb43A2xo.外d
64	00	1														d.

The First Data Sent to SodaMaster C2

Contains 7 types of data

ID	Length	Data
0x03	Variable	Username
0x07	Variable	Computer name
0x04	5 Bytes	PID, Privilege flag
0x40	9 Bytes	Processor architecture (1 byte), OS major version (2 bytes), OS build number (2 bytes), Legacy OS flag (e.g., Win2003 x64 = 0xFF10) (2 bytes), OS product type (2 bytes)
0x05	Variable	Date of execution (yyyy/mm/dd hh:mm:ss)
0x06	Variable	RC4 encryption key for C2 communication
0x08	4 Bytes	Socket name

Encryption Process for The First Data

- 1. RSA encryption
 - Base64 encoded public key is hardcoded
 - The public key is different in each sample
- 2. Inverting encrypted data
- 3. Adding junk data at the end (ver.2 or later)
 - Two types of calculation methods for the size of the junk data were observed:
 - i. (address of encrypted data + address of collected data from victim) % 0x50 + 5
 - ii. (address of encrypted data + returned value of GetTickCount) % 0x50 + 5
 - Add data extracted from encrypted data by unique algorithm to the end

Encrypt by RSA + Invert

 03
 F2
 FF
 81
 F1
 DA
 30
 CD
 82
 44
 74
 ED
 94
 33
 51

 E0
 43
 E0
 F9
 F8
 B2
 81
 7B
 6F
 3B
 50
 F2
 8C
 66
 EF
 DD

 F5
 F1
 D0
 74
 AC
 F4
 FC
 4F
 1F
 47
 01
 AA
 89
 91
 0F
 96

 2A
 D9
 D6
 74
 73
 DD
 50
 1D
 5D
 74
 3C
 F3
 4A
 D2
 9B
 F0

 66
 C6
 38
 A0
 30
 28
 9C
 D9
 C8
 89
 22
 6C
 42
 EB
 82
 EA

 D2
 91
 3B
 0A
 F3
 48
 9A
 42
 FE
 92
 8C
 B4
 08
 F1
 98
 B7

 2D
 D6
 EB
 2A
 30
 32
 C4
 91
 E8
 87
 DA

Unnecessary data added to the end of data

	9A	82	ED	EB	98	8C	51	8C	6F	3B	91	28	8C	9C	DD
8C	FF	6C	F1	94	28	C8	C4	3C	ØF	42	33	30	C4	82	28
FC	30	1D	42	51	74	4F	8C	74	9B	89	FC	E0	28	30	F3
EA	A0	51	94	73	EF	89	D6	B7	ØF	4A	DD	4F	FC	C8	66
7B	74	47	91	3C	EØ	1D	43	00	00	00	00	00	00	00	00

New TTPs Observed in 2021

Continuous A41APT Campaign in 2021

Jackpot Webshell

- Webshell malware firstly reported by Trend Micro with their deep analysis
 - \circ It was used as a payload of SigLoader in 2021
- Works as a standalone HTTP sever
 - Jackpot receives commands via a POST request for the specific URL
 - A domain/IP address of victim organization is hardcoded
 - Jackpot tends to be found at the IIS servers, because the infected host must be the internet-facing server
 - Even if the IIS service is running, Jackpot works on the same port

Microsoft Exchange Server

Exploiting ProxyShell vulnerability

- The following commands were observed on a PowerShell session obtained by the exploit
 - copy ping
 - dir query user
 - ipconfig /all
 type
 - net user / domain
 tasklist
 - net time /domain
 whoami
 - wmic /node:<ip address> process call create cmd /c Dnscmd /EnumZones ><output file>
 - [System.Text.Encoding]::Unicode.GetString([System.Convert]::FromBase64String('<string>')) |
 Out-File -FilePath <File path>
- China Chopper webshell was installed after above activities

HUI Loader

- We discovered another loader used for loading SodaMaster in 2021
 - Unnamed loader that has been observed since 2015 for various payloads
 - Named after string "HUIHWASDIHWEIUDHDSFSFEFWEFEWFDSGEFERWGWEEFWFWEWD"

lea	r8. aCWindowsInstal : "c:\\windows\\install.log"	mov	eax, 'v'
lea	<pre>rcx, FileName ; lpFileName</pre>	lea	<pre>rcx, [rbp+300h+Buffer] ; lpBuffer</pre>
db	66h, 66h, 66h, 66h	mov	<pre>[rsp+400h+filename+4], ax</pre>
nop	word ptr [rax+rax+00000000h]	mov	eax, 'c'
		mov	edx, 104h ; uSize
	; CODE XREF: aa_open_install_log	mov	[rsp+400h+filename+6], ax
movzx	eax, word ptr [rdx+r8]	mov	eax, 'h'
add	rdx, 2	mov	dword ptr [rsp+400h+filename], 73005Ch ; "\s"
mov	[rdx+rcx-2], ax	mov	[rsp+400h+filename+8], ax
inz	ax, ax short loc 180001480	mov	eax, 't'
xor	r9d, r9d ; lpSecurityAttributes	mov	dword ptr [rsp+400h+filename+0Ah], 73006Fh ; "os"
mov	<pre>[rsp+48h+hTemplateFile], 0 ; hTemplateFile</pre>	mov	dword ptr [rsp+400h+filename+10h], 65002Eh ; ".e"
		mov	dword ptr [rsp+400h+filename+14h], 650078h ; "xe"
mov lea	eax, 80000000n ; awDestreaAccess	mov	[rsp+400h+filename+18h], si
mov	[rsp+48h+dwFlagsAndAttributes]. 80h : '€' : dwFl	mov	[rsp+400h+filename+0Eh], ax
mov	<pre>[rsp+48h+dwCreationDisposition], 3 ; dwCreationD</pre>	call	cs:GetSystemDirectoryW
call	cs:CreateFileW	xor	eax. eax

Execution Flow of HUI Loader

Decoding Process of HUI Loader

...: "5\"+9> 1VQ:6\\BG)F@;=GJ5POS-2%S(]&\"AY! 32@D5-KL XOR decode by the hardcoded unique key ...: ")J<K(D%L6<BU/CJ0;2 (NH=3DAWQQG [>@1I+PK*S7,GDB\\ ...: "I'B]ETP?1HBU50, '+OCZA/M\"C2YO-9J5UYAD5Z]*(W\"9EB 101dProtect = 0: ...: "];AHOMME<IY=+0 T*+J.-1=-)L9B=1\\I;'],0;1U)3*2TDB memset(Buffer, 0, sizeof(Buffer)); qmemcpy(xor_key, "Z:/9#4AUG. \"BN1T1\\KD0HM(<Y7![1", 30);_ ...: "9!@CA?M[)[S5A4L2]T*FUHC9I&C+0]UALICQ7[E; Z(0?.:A encrypted payload = CreateFileW(&FileName, 0xC0000000, 3u, 0, 3u, 0x ...: "sh7wh6gz36i2g692gwuk265qa", file mapping = CreateFileMappingW(encrypted payload, 0, 4u, 0, 0, 0) ...: "[F*[,.27PAIYCV0H#ND,DHNU.5TN\$P?0,J8J0&090<]!A8(& if (!file mapping) ...:] swprintf(Buffer, L"HUIHWASDIHWEIUDHDSFSFEFWEFEWFDSGEFERWGWEEFWFWEWD [In [2]: len(KNOWN_KEYS) payload size = GetFileSize(encrypted payload, 0); Out[2]: 20 CloseHandle(encrypted payload); nap view = MapViewOfFile(file mapping, 4u, 0, 0, 0); ProcessHeap = GetProcessHeap(); def hui decode(enc, key): payload data = HeapAlloc(ProcessHeap, 8u, heap size); 'irtualProtect(payload data, payload size + 50, 0x40u, &flOldProtect key = bytearray(key.encode()) memcpy(payload data, map view, payload size + 1); dec = bytearray() for i in range(len(enc)): data = payload data;for (i = 0; i < size; ++i) payloadbyte = enc[i] ^ 0x20 ^ key[i%len(key)] data[i] ^= 0x20u; dec.append(payloadbyte) for (j = 0; j < size; ++j)data[j] ^= xor key[j % 0x1Eu]; return dec Sleep(0x1F4u);

Attribution of The Threat Actor

Continuous A41APT Campaign in 2021

View of Trend Micro and Kaspersky

Linking to BRONZE RIVERSIDE (APT10) ?

調査結果に基づき、私たちはA41APTの活動の背後にAPT10が存在することにはか なりの確度があると考えています。裏付けとなるのは以下のポイントです。

第1に、x86 SodaMaster検体にハードコードされた「www.rare-coisns[.]com」と いうURLが、ADEO IT Consulting Servicesによるレポート (英語)の中で言及され ています。同レポートは、トルコの金融および電気通信セクターを標的とする APT10の活動に関するもので、VirusTotalへの提出があった地理位置情報とも一致 します。

第2に、A41APTの攻撃活動とAPT10の活動との類似性は、Cylanceのブログ記事 (英語)で説明されています。記事中ではEcipekac、FYAntiのユニークなエクス ポート名である「F**kY**Anti」、CppHostCLRの使用、FYAntiの最終ペイロードと してのQuasarRATについて触れられています。それだけでなく、Symantecのブロ グ記事(英語)にて言及されているFYAnti、「F**kY**Anti」というエクスポート 名、.NETローダーの注入に使用されるCppHostCLR、QuasarRATも、BlackBerry Cylance Threat Research Teamによって発見されたAPT10グループの活動と類似し ています。

このほか、私たちが過去に作成したAPT10の活動に関するThreat Intelligence Portalレポートには、複数の類似性と共通のTTPが見られます。

A41APT, BRONZE RIVERSIDE and LockFile

In August 2021, The HUI Loader was pointed out to be used with BRONZE RIVERSIDE and LockFile

Emanuele De Lucia

Thomas Roccia @frOgger_

Both files use DLL side-loading and contain quite a few similar functions as shown below using Diaphora.

Address 2	Name 2	Ratio	BBlocks 1	BBlocks 2	Descrip
10001050	StartAddress	1.000	9	9	Perfect
10001330	sub_10001330	1.000	11		Same c
1000499f	sub_1000499F	1.000			Same c
100049c5	sub_100049C5	1.000			Same c
100089dd	sub_100089DD	1.000			Same c
1000a21b	sub_1000A21B	1.000			Same c
1000432e	sub_1000432E	1.000			Same c
1000433d	sub_1000433D	1.000			Same c
10002d0b	sub_10002D0B	1.000			Mnemo
1000434c	sub_1000434C	1.000			Mnemo
10009ea3	sub_10009EA3	1.000			Mnemo
10001480	SetDesktopMonitorHook	1.000			Mnemo
1000417e	sub_1000417E	1.000			Nodes,
10003b6d	sub_10003B6D	1.000			Nodes,
10009bad	sub 10009BAD	1.000			Nodes

Redefinition of Chaotic A41APT Campaign

Attribution should not be done only by the malware/tools used - but it's likely that the actor is based in China

What We Can Do against the Chaotic A41APT Campaign

Challenge to Know Your Own Organization

Fighting against Opportunistic Compromise, Targeted Deployment

- The actor attempts to compromise every organizations who seem to be related to their goals, then the actor will choose (an) organization(s) from among the victims as a start point
 - Not only HQ, subsidiaries and overseas branches will be affected
 - Incidents will happen at organizations who don't have enough security controls for internet-facing systems
- Do you have a true understanding of your organization from security perspective?
 - Infrastructure/Security controls of overseas branches, subsidiaries
 - Different systems from HQ
 - Low-budget security controls
 - Network/System sharing between HQ and subsidiaries
 - Leave maintenance and operation of system SI vendors
 - Network management, Account management, Endpoint management, etc.

Nothing changed from 2020

Conclusion

- Chaotic A41APT campaign
 - The campaign is still ongoing and expanding its TTPs
 - Multiple threat groups seem to be involved
 - The actor always intruded via Internet-facing systems
- Countermeasure should be the same with post-intrusion ransomware attacks
 - Protect internet-facing systems of whole your company including branch offices and subsidiaries
 - Cooperate with SI vendors
 - Detect usage of hacking tools or AD related tools for lateral movement after establishing C2
 - Hunt the threats by using EDR, auditing various logs, checking ASEP
- Information sharing like this would be helpful for everyone?
 - Difficult to reveal a whole picture of a campaign by a single vendor
 - Organizing information can preserve the anonymity of victims

Reference Regarding A41APT

- 1. A41APT case ~ Analysis of the Stealth APT Campaign Threatening
 - <u>https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_202_niwa-yanagishita_en.pdf</u>
 - https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_202_niwa-yanagishita_jp.pdf
- 2. APT10: sophisticated multi-layered loader Ecipekac discovered in A41APT campaign
 - <u>https://securelist.com/apt10-sophisticated-multi-layered-loader-ecipekac-discovered-in-a41apt-campai</u> <u>gn/101519/</u>
 - <u>https://blog.kaspersky.co.jp/apt10-sophisticated-multi-layered-loader-ecipekac-discovered-in-a41apt-c</u> <u>ampaign/30393/</u>
- 3. APT10: Tracking down the stealth activity of the A41APT campaign
 - <u>https://media.kasperskydaily.com/wp-content/uploads/sites/86/2021/02/25140359/greatidea_A41_v1.</u>
 <u>0.pdf</u>
- 4. 標的型攻撃の実態と対策アプローチ 第5版 日本を狙うサイバーエスピオナージの動向2020年度 Macnica Networks, TeamT5
 - <u>https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5.pdf</u>
- 5. 「Earth Tengshe」によるマルウェア「SigLoader」を用いた攻撃キャンペーンで観測された新たなペイロード
 - <u>https://blog.trendmicro.co.jp/archives/29842</u>

Other References

- 1. Uncovering New Activity By APT10 | FortiGuard Labs
 - <u>https://www.fortinet.com/blog/threat-research/uncovering-new-activity-by-apt-</u>
- 2. Insights into Ransomware Spread Using Exchange 1-Day Vulnerabilities 1-2 NSFOCUS, Inc.,
 - <u>https://nsfocusglobal.com/insights-into-ransomware-spread-using-exchange-1-day-vulnerabiliti</u> <u>es-1-2/</u>
- 3. Twitter
 - <u>https://twitter.com/Manu_De_Lucia/status/1430115616862638080</u>
 - <u>https://twitter.com/fr0gger_/status/1430213808434339842</u>
- 4. Guidance for preventing, detecting, and hunting for exploitation of the Log4j 2 vulnerability
 - <u>https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/</u>
- 5. AutoRuns
 - <u>https://docs.microsoft.com/ja-jp/sysinternals/downloads/autoruns</u>

loCs

Value	Туре	Description
cf5ec3b803563d8ef68138f5303ebc362b72da36da29b9cba3062ae996db9234	SHA256	HUILoader
c13f93b7bb1f8f5f9bd6dd4d25f7af873119c8b8248490de6bd9b29d0c68783e	SHA256	Encoded SodaMaster shellcode
168.100.8.20	IP	SodaMaster C2
9bec85e6a3d811826580540b541723c6b5236377a3a980b1ffa5bf5f749a99d4	SHA256	HUILoader
7db327cc7bd622038f69b4df4178ca3145659a73cbcb10d0228e48f2ece60896	SHA256	Encoded SodaMaster shellcode
www[.]monferriina[.]com	Domain	Sodamaster C2
c0ed7939945726b61100009b926917723fdc5f9b2df0be070f2a500b6edf161c	SHA256	SigLoader (Layer I)
0a570b32d14799f6351ee211093567450d41705ca79e236a38ca15f135d78bfd	SHA256	SigLoader (Layer I)
2da5e37ec4c7059a7935165039ea31b0c9cc8f1bb0d0c620759776979158cf30	SHA256	SigLoader (Layer I)
e8797b4334fbaa067d5f91d1481bd8f55bf2e45483a92a8ea7030c2c604dd273	SHA256	SigLoader (Layer I)
68dd499bca62e004c97ccc17f68e3d6dde2885446924dabe8cc525763caa08a3	SHA256	Encrypted SodaMaster shellcode
192.248.183.113	IP	SodaMaster C2
1f1bcb03b008c4fdd462e7d2b5db5ca321ff6d56bbb22cddd39c82df1f6a038f	SHA256	DESLoader (1st Loader)
7337071599eb49c75c63dff210aa516ea8dbbe99a8a66237f66f3f3c7f5aed31	SHA256	Encrypted SigLoader shellcode
59986e20e03774c7d0f5adb4eca394f5f51b01a8c2ba9cb6c1ce30f9312b9566	SHA256	Encrypted SodaMaster shellcode
185.10.16.115	IP	SodaMaster C2
8efcecc00763ce9269a01d2b5918873144746c4b203be28c92459f5301927961	SHA256	HUILoader in 2015
20fc3cf1afcad9e6f19e9abebfc9daf374909801d874c3d276b913f12d6230ec	SHA256	Mimikatz

FYI: Hunting Suspicious ASEP

When EDR and Forensic Tools are not ready

- Audit ASEP by using tools such as Autoruns is effective
- In A41APT campaign, scheduled tasks are favor to be used
 - Investigating scheduled tasks with the following condition could be useful
 - 3rd party legitimate executables under C:\Windows\, C:\Intel\

Autoruns - Sysinternals: www	v.sysinternals.com						
File Search Entry User	Options Category Help						
B 🗄 💍 🗅 🔎	Hide Empty Locations Hide Microsoft Entries	C:¥Windows¥ Filter					
🎭 WinLogon	✔ Hide Windows Entries	ters	Print Monitors	9 I	LSA Providers	₽	Network Providers
Everything	Hide VirusTotal Clean Entries	Internet Explorer	Scheduled Tasks	i Services	Drivers	Codecs	Boot Execute
Autoruns Entry	Always On Top	Description	Publis	her	Image Pa	th	
Task Scheduler	Scan Options						
🗹 🔳 ¥Schedule Retry Scan	Font	OpenSSL application	(Verifi	ed) OpenVPN Inc.	C:¥Windo	ws¥System32¥winrm	h¥0409¥usoclient.exe
	Theme	•					

IOCs - Examples of Scheduled Task

Program	Descritpion	Publisher
C:\Windows\RoutineMaintenance.exe		D3L
C:\Windows\ceiprole.exe	Malwarebytes Anti-Exploit 64bit tasks	Malwarebytes Corporation
C:\Windows\Vss\Writers\System\FamilySafety.exe	Java(TM) Platform SE binary	International Business Machines Corporation
C:\Windows\System32\winrm\0409\usoclient.exe	OpenSSL application	OpenVPN Inc.
C:\Windows\System32\da-DK\DataProviders.exe	OpenSSL application	OpenVPN Inc.

In other cases, 3rd party legitimate executables such as VMware Tools, Sandboxie that should be under \Program Files\ folder are installed under C:\Windows, C:\Intel\

