
ma2tl:

macOS Forensic Timeline Generator

Using mac_apt Analysis Results

Japan Security Analyst Conference 2022

Internet Initiative Japan Inc.
Minoru Kobayashi

Who am I?

Minoru Kobayashi

2

• Office of Emergency Response and Clearinghouse for Security Information,

Advanced Security Division, Internet Initiative Japan Inc.

Technical research, internal incident response

• External Activities

Security Camp National Conference Speaker 2017-2019

Japan Security Analyst Conference Speaker 2018/2020

Black Hat USA 2018 Briefing Speaker

• Twitter: @unkn0wnbit

Table of Contents

1. Motivation

2. How to create a timeline using the

analysis results of mac_apt

3. Implementation of ma2tl

4. Future work

5. Summary

3

Introduction

4

0

Introduction

◦The contents of this presentation are

all based on research and verification

conducted on Intel Macs.

◦There may be some differences in

specifications on M1 Macs.

◦However, in many respects, it could be

diverted to investigate M1 Macs.

5

Motivation

6

1

The Need for Timelines in Forensics

◦What to do after collecting artifacts
▪ Analyze OS and application artifacts with tools and

create a timeline from the results.

◦Purpose of creating a timeline
▪ Understand the situation (suspicious points) of the

affected terminal.
▪ Organize the main activities of users, malware, and

attackers based on timestamps.
▸Execute programs, download files, mount volumes, set

persistence, etc.

▪ Creating a timeline can reduce bias, leaps in thinking,
and omissions in the research process.

7

Which tool to choose?

◦Plaso
▪ https://github.com/log2timeline/plaso

▪ Automatic generation of super timelines

▪ Capable of analyzing artifacts from various

operating systems, including macOS.

▪ Maintenance is active

◦Plaso can generate super timelines 🤩

8

% log2timeline.py --storage-file victim.plaso victim.E01
% psort.py -o l2tcsv -w victime.csv victim.plaso

https://github.com/log2timeline/plaso

Analyze with Plaso

9

It takes more than 4.5 days to process a

disk image with a capacity of 30GB.

(For default settings)

Super Timeline by Plaso

10

Mostly filesystem events

Problems with the super timeline generated by Plaso

◦ All filesystem metadata is parsed by default.
▪ The number of unimportant files in the analysis is much higher.
▪ One file metadata is split into four events (MACB).

◦ The system log is recorded as a line by line event.
▪ We want meaningful information about what happened, not just line-by-

line events (we don't need just log messages).
▪ Unified Logs are not analyzed.

◦ As a result, most of the super timeline is filled with file
system and system log events.

◦ It takes too long to complete the analysis in the first place.

◦ This is not the kind of information a forensic analyst wants to
see first.

11

The information the forensic analysts want and the
investigation strategy

◦ For malware infection investigation
▪ Persistence setting status

▪ Program execution history

▪ Volume (USB thumb drives or disk images) mount

▪ File Download

◦Make this kind of information the most basic timeline.

◦ Flesh out the timeline by expanding the scope of the investigation
or conducting a deeper investigation as needed.

◦We need a timeline to use as a basis for the investigation.

◦ Creating a timeline with only the necessary activities from the
analysis results of a tool focused on artifact analysis is more in line
with the requirements.

12

Tools focused on artifact analysis

◦There are two candidate analysis tools
▪ AutoMacTC
▸https://github.com/CrowdStrike/automactc

▸Maintenance is stagnant.

▪ mac_apt
▸https://github.com/ydkhatri/mac_apt

▸Maintenance is active.

13

https://github.com/CrowdStrike/automactc
https://github.com/ydkhatri/mac_apt

Which tool should we use?

◦ In view of the maintenance status and
functionality, I recommend "mac_apt".

◦Why is maintenance so important?
▪ macOS artifacts often change their file names and

paths with version upgrades.
▪ Using analysis tools that are not maintained will

increase the number of artifacts that cannot be
analyzed over time.

◦Unified Logs parser is implemented.
▪ Unified Logs records a lot of useful information, but

only mac_apt has a parser implemented in OSS.

14

Motivation for creating the tool

◦ It is currently best to create a timeline that can be used as a
template from the results of mac_apt analysis.

◦ To create a timeline from mac_apt analysis results, we need
to refer to various tables.
▪ A table will be created for the number of plugins used in the analysis.
▪ Spotlight tables are cumbersome with many columns.

◦Unified Logs contain useful information, but mac_apt does
not analyze them according to the message content.
▪ The message may change depending on the OS version upgrade.
▪ It is complicated to do a lot of filtering manually.
▪ Even with filtering, the output results may be large, and it may be difficult

to visually check.

◦ I need a tool that automatically generates a forensic
timeline!

15

Similar Tools

◦ In terms of organizing, displaying, and
checking the results of mac_apt analysis, the
following tools also exist
▪ mac_int
▸https://burnhamforensics.com/projects/mac_int/

▪ Building a Visualization Tool for mac_apt
▸https://leahycenterblog.champlain.edu/2020/05/01/building-

a-visualization-tool-for-mac_apt/

◦Different in the following ways
▪ The main purpose of these tools is to check the results

of mac_apt analysis in GUI, not to generate a timeline.
▪ No maintenance is being performed at this time.

16

https://burnhamforensics.com/projects/mac_int/
https://leahycenterblog.champlain.edu/2020/05/01/building-a-visualization-tool-for-mac_apt/

How to create a timeline using the

analysis results of mac_apt

17

2

Analysis results of mac_apt

◦DB where mac_apt stores the analysis
results
▪ mac_apt.db : Results of artifact analysis

▪ UnifiedLogs.db : Parsed Unified Logs

▪ APFS_Volumes_<GUID>.db : Parsed APFS
metadata

▪ Export and SPOTLIGHT_DATA : Folder where
the artifact files exported from the disk image
will be saved

18

mac_apt.db

19

There are as many tables as

plugins used in the analysis.

UnifiedLogs.db

20

You can apply filters equivalent to

the log command.

APFS_Volumes_<GUID>. db

21

You can check file timestamps, etc.,

but they are not formatted.

Timeline Creation Policy

◦Focus the investigation on analysis
results with time stamps.
▪ If timestamp is missing, refer to other tables or

APFS_Volumes_xxxx.db

◦Create a timeline for the following
activities
▪ Persistence setting status
▪ Program execution history
▪ Volume mount
▪ File Download

22

Persistence Analysis (1/3)

◦mac_apt.db : AutoStart
▪ First, check the general user settings.

▪ No timestamp was recorded.

23

Autorun configuration fileAutorun program

Persistence Analysis (2/3)

◦Check the timestamp of the auto-run

configuration file and the executable

in APFS_Volumes_xxxx.db

24

SELECT * FROM Combined_Paths LEFT JOIN Combined_Inodes ON Combined_Paths.CNID = Combined_Inodes.CNID WHERE
Combined_Paths.Path = "/path/to/file" LIMIT 1;

File creation timestamp

Persistence Analysis (3/3)

◦Many autorun programs can
be found in the folders
listed on the right.

◦ Since macOS 10.15, the
system volume and data
volume have been split.
▪ The system volume is mounted

as read-only, so the risk of
tampering is lower than before.

▪ Starting with macOS 11, the
system volume is also signed.

◦ Therefore, programs on the
system volume can be
excluded from the
investigation at first

25

System volume

Data volume

Since macOS 10.15, it

is mounted as read-

only, so there is little

risk of tampering.

Excerpt from the source code of ma2tl

Program execution history analysis

◦mac_apt.db : SpotlightShortcuts
▪ Applications executed via Spotlight will be

recorded.

26

The string entered

in Spotlight

Application name

Timestamp

(Only the date and time of the last execution.)

Application path

Volume mount analysis

◦mac_apt.db : RecentItems

◦mac_apt.db : FsEvents

27

We can see the

volume name, but

not the timestamp.

Modification date of the artifact file

(Not the timestamp)

Filtering conditions for volume mounts

(create a folder under Volumes/)

File download analysis (1/5)

◦mac_apt.db : Quarantine
▪ DB analysis results that store the same content as

the com.apple.quarantine extended attribute that
is assigned to files downloaded by web browsers,
etc.

28

Timestamp Application name Data download URL Origin URL

File download analysis (2/5)

◦mac_apt.db : Safari
▪ The destination of the file will be recorded.

▪ Since there is no timestamp, the timestamp is
inferred by linking the URL to the DataUrl in the
Quarantine table.

▪ Safari's download history is deleted after a day by
default.

29

Data download URL
No timestamp Local file path

File download analysis (3/5)

◦mac_apt.db : Chrome

30

Data download URL

Download start timestamp
Local file path

Download completion timestamp

Origin URL

File download analysis (4/5)

◦mac_apt.db : SpotlightDataView

31

Download completion timestamp

Local file path

Data download URL

File download analysis (5/5)

◦No artifacts are left behind when files
are downloaded with the macOS
standard command "curl".
▪ It leaves traces of the curl execution itself, but

does not tell us where it was accessed.

◦ In such cases, other investigations
such as malware analysis are also
necessary.

32

Information confirmed from mac_apt analysis results (1/2)

◦ Persistence setting status
▪ We know the autorun configuration file and the program to be autorun.
▪ We can also see the timestamps of the above files.

◦ Program execution history
▪ We know which applications were executed via Spotlight.
▪ We know when it was last executed.
▪ There is no other execution history with timestamps.

◦ Volume mount
▪ We know the name of the volume you mounted.
▪ The exact date and time of the mount is unknown.

◦ File Download
▪ We know the date and time of the download, the URL from which it was

downloaded, and the file path to which it was saved.

33

Not enough
information.

Information confirmed from mac_apt analysis results (2/2)

◦The information in mac_apt.db alone

is clearly not enough to create a

timeline

◦Any other data we should investigate?

34

"UnifiedLogs.db"

35

UnifiedLogs.db is a goldmine (1/5)

◦Unified Logs contains information necessary
to create a timeline, such as program
execution history and volume mount history,
which are not left in other artifacts.

◦A veritable gold mine for macOS forensics

◦But for some reason, I almost never see
articles or blogs that explain this kind of
information.

36

UnifiedLogs.db is a goldmine (2/5)

◦Even commercial products parse

Unified Logs, but do not perform

analysis based on message content.

◦Database load time, filtering time, etc.

are also slower than processing

UnifiedLogs.db.

37

UnifiedLogs.db is a goldmine (3/5)

38

Filtering is possible,

but the process is not

very fast.
UnifiedLog will also be parsed.

UnifiedLogs.db is a goldmine (4/5)

◦ log command

◦Filtering Keywords

39

% log show --predicate 'FILTERING CONDITION' --start 'YYYY-MM-DD hh:mm:ss' --end 'YYYY-MM-DD hh:mm:ss'

eventType The type of event: activityCreateEvent, activityTransitionEvent, logEvent, signpostEvent, stateEvent,
timesyncEvent, traceEvent and userActionEvent.
eventMessage The pattern within the message text, or activity name of a log/trace entry.
messageType For logEvent and traceEvent, the type of the message itself: default, info, debug, error or fault.
process The name of the process the originated the event.
processImagePath The full path of the process that originated the event.
sender The name of the library, framework, kernel extension, or mach-o image, that originated the event.
senderImagePath The full path of the library, framework, kernel extension, or mach-o image, that originated the event.
subsystem The subsystem used to log an event. Only works with log messages generated with os_log(3) APIs.
category The category used to log an event. Only works with log messages generated with os_log(3) APIs. When
category is used, the subsystem filter should also be provided.

UnifiedLogs.db is a goldmine (5/5)

◦Unified Logs format

▪ In fact, it is displayed as a single line.

40

% log show --info --debug --predicate 'sender == "TimeMachine"'
Filtering the log data using "sender == "TimeMachine""
Timestamp Thread Type Activity PID TTL
2021-11-09 18:41:17.571449+0900 0x23fb85 Info 0x0 259 0 backupd: (TimeMachine)
[com.apple.TimeMachine:General] Mountpoint '/Volumes/TimeMachine' is still valid

Timestamp
Thread ID

Log Type

Activity ID

Process ID

TTL

Process Name

Sender (Library)

Subsystem Category Event Message

Investigating Unified Logs (1/13)

◦Program execution history (1)
▪ Application Bundle (1)

▪ macOS 10.15

41

% log show --info --debug --predicate 'sender == "LaunchServices" AND eventMessage beginswith "LAUNCHING:0x"'
Filtering the log data using "sender == "LaunchServices" AND composedMessage BEGINSWITH "LAUNCHING:0x""
Timestamp Thread Type Activity PID TTL
2021-07-26 12:56:05.393696+0900 0x77b0f8 Default 0x0 78164 0 Evernote: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCHING:0x0-0x68c68c Safari foreground=1 bringForward=1 seed=7287 userActivityCount=0
2021-07-27 14:43:16.966842+0900 0x61b6f Default 0x0 482 0 Electron: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCHING:0x0-0xe50e5 Safari foreground=1 bringForward=1 seed=683 userActivityCount=0
2021-07-29 11:26:05.382074+0900 0x102e4d Default 0x0 498 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCHING:0x0-0x189189 Safari foreground=1 bringForward=1 seed=1579 userActivityCount=0
2021-07-29 11:28:03.749083+0900 0x10362b Default 0x0 29622 0 open: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCHING:0x0-0x18e18e Safari foreground=1 bringForward=1 seed=1587 userActivityCount=0

Launched application

Sender is "LaunchServices" and the

message starts with

"LAUNCHING:0x".

Startup source

Investigating Unified Logs (2/13)

◦Examples of startup source
▪ Finder
▪ Dock
▪ Spotlight
▪ loginwindow
▸Applications that were executed when the "Reopen

windows when logging back in" checkbox was checked
in the logout dialog box and the user logged in again.

▸The application specified in "Login Items" under "Users
& Groups".

▪ open
▸If you run the application with the open command

42

Investigating Unified Logs (3/13)

◦Program Execution History (2)
▪ Application Bundle (2)

▪ macOS 11.0.1 - 12.0.1

43

% log show --info --debug --predicate 'sender == "LaunchServices" AND eventMessage beginswith "LAUNCH: 0x"'
Filtering the log data using "sender == "LaunchServices" AND composedMessage BEGINSWITH "LAUNCH: 0x""
Timestamp Thread Type Activity PID TTL
2021-08-19 14:19:54.319840+0900 0x1676 Default 0x0 427 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x3d03d com.apple.Maps starting stopped process.
2021-08-19 14:21:52.526205+0900 0x21fb Default 0x0 427 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x4d04d com.apple.Safari starting stopped process.
2021-08-19 14:48:38.978195+0900 0x186b Default 0x0 388 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x3e03e com.apple.MobileSMS starting stopped process.
2021-08-19 14:57:09.230491+0900 0x246e Default 0x0 388 0 Dock: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x73073 com.apple.Safari starting stopped process.
2021-08-19 15:01:09.077054+0900 0x329 Info 0x0 153 0 loginwindow: (LaunchServices)
[com.apple.launchservices:open] LAUNCH: 0x0-0x17017 com.apple.Terminal launched with launchInStoppedState=true, and not starting the
application.
2021-08-19 15:01:09.228395+0900 0x329 Info 0x0 153 0 loginwindow: (LaunchServices)
[com.apple.launchservices:open] LAUNCH: 0x0-0x18018 com.google.Chrome launched with launchInStoppedState=true, and not starting the
application.

The message changes to

"LAUNCH: 0x".

Launched application

(Application Bundle ID)

Startup source

Investigating Unified Logs (4/13)

◦Behavior in macOS 11 and later (1)
▪ Applications executed with the open command

will not be recorded.
▪ Bugs in macOS 11.6 (?)
▸Logging does not occur unless the startup source is

"loginwindow", "SystemUIServer", or
"SoftwareUpdateNotificationManager".

▸macOS 11.6.1 and later are back to the same
specifications as 11.5.2 before.

▸Release notes for macOS 11.6.x have not been released,
so details are unknown.
● https://developer.apple.com/documentation/macos-

release-notes

44

https://developer.apple.com/documentation/macos-release-notes

Investigating Unified Logs (5/13)

◦Behavior in macOS 11 and later (2)
▪ When the startup source is "loginwindow".
▸Applications that are subject to "Reopen windows

when logging back in" will be logged as "Type =
Info" and will only be logged in memory.
● The message contains "launchInStoppedState=true"

▸Applications specified in the "Login Items" section of
"Users & Groups" are logged as "Type = Default"
and will remain logged even after reboot.

45

% log show --info --debug --predicate 'sender == "LaunchServices" and eventMessage beginswith "LAUNCH: 0x"' --start '2022-01-14'
Filtering the log data using "sender == "LaunchServices" AND composedMessage BEGINSWITH "LAUNCH: 0x""
Timestamp Thread Type Activity PID TTL
2022-01-14 08:21:21.918761+0900 0x21efb Info 0x0 4067 0 loginwindow: (LaunchServices) [com.apple.launchservices:open]
LAUNCH: 0x0-0x9ee9ee com.apple.Terminal launched with launchInStoppedState=true, and not starting the application.

Log of application executed with

"Reopen windows when logging back in".

Investigating Unified Logs (6/13)

◦Behavior in macOS 11 and later (3)
▪ The first time you run an application downloaded from

the Internet, Gakekeeper will be checked.
▪ The log will be recorded with "Type = Info" (recorded

in memory only).
▪ The message contains "launchInQuarantine == true".

46

% log show --info --debug --predicate 'sender == "LaunchServices" and eventMessage beginswith "LAUNCH: 0x"' --start '2022-01-14 13:00:00'
Filtering the log data using "sender == "LaunchServices" AND composedMessage BEGINSWITH "LAUNCH: 0x""
Timestamp Thread Type Activity PID TTL
2022-01-14 13:17:44.405335+0900 0x4786 Default 0x0 1124 0 Dock: (LaunchServices) [com.apple.processmanager:front-35286506]
LAUNCH: 0x0-0xd80d8 com.apple.Safari starting stopped process.
2022-01-14 13:18:44.148002+0900 0x50ea Info 0x0 1124 0 Dock: (LaunchServices) [com.apple.launchservices:open] LAUNCH:
0x0-0xeb0eb com.apple.DiskImageMounter launched with launchInQuarantine == true, so not starting the application.
2022-01-14 13:19:19.907199+0900 0x523c Info 0x0 1127 0 Finder: (LaunchServices) [com.apple.launchservices:open] LAUNCH:
0x0-0xf10f1 com.ridiculousfish.HexFiend launched with launchInQuarantine == true, so not starting the application.
2022-01-14 13:21:21.389996+0900 0x5472 Default 0x0 1127 0 Finder: (LaunchServices) [com.apple.processmanager:front-
35286506] LAUNCH: 0x0-0x100100 com.ridiculousfish.HexFiend starting stopped process.

Run the downloaded application

(the second time).

Run the downloaded application

(the first time).

Investigating Unified Logs (7/13)

◦Program Execution History (3)
▪ If there is no application bundle ID (1)
▸The application bundle ID is recorded as "(null)".

▸macOS 11 or later

47

% log show --predicate 'eventMessage beginswith "LAUNCH: 0x"' --start '2022-01-12'
Filtering the log data using "composedMessage BEGINSWITH "LAUNCH: 0x""
Skipping info and debug messages, pass --info and/or --debug to include.
Timestamp Thread Type Activity PID TTL
2022-01-12 03:57:14.516187+0900 0x1693 Default 0x0 358 0 Finder: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x4d04d com.apple.DiskImageMounter starting stopped process.
2022-01-12 03:57:25.281130+0900 0x1d25 Default 0x0 358 0 Finder: (LaunchServices)
[com.apple.processmanager:front-35286506] LAUNCH: 0x0-0x50050 (null) starting stopped process.

Investigating Unified Logs (8/13)

◦Program Execution History (4)
▪ No application bundle (2)
▸Identify applications recorded as (null)

48

% log show --predicate 'process == "lsd" and eventMessage beginswith "Non-fatal error enumerating"' --start '2022-01-12 03:57:24' --
end '2022-01-12 03:57:26'
Filtering the log data using "process == "lsd" AND composedMessage BEGINSWITH "Non-fatal error enumerating""
Skipping info and debug messages, pass --info and/or --debug to include.
Timestamp Thread Type Activity PID TTL
2022-01-12 03:57:25.245990+0900 0x18fd Default 0x0 357 2 lsd: (LaunchServices)
[com.apple.launchservices:default] Non-fatal error enumerating at <private>, continuing: Error Domain=NSCocoaErrorDomain Code=260
"The file “PlugIns” couldn’t be opened because there is no such file." UserInfo={NSURL=PlugIns/ --
file:///Volumes/FakeTest/FakeApp.app/Contents/, NSFilePath=/Volumes/FakeTest/FakeApp.app/Contents/PlugIns,
NSUnderlyingError=0x7fc1edd290c0 {Error Domain=NSPOSIXErrorDomain Code=2 "No such file or directory"}}
2022-01-12 03:57:25.255719+0900 0x18fd Default 0x0 357 2 lsd: (LaunchServices)
[com.apple.launchservices:default] Non-fatal error enumerating at <private>, continuing: Error Domain=NSCocoaErrorDomain Code=260
"The file “PlugIns” couldn’t be opened because there is no such file." UserInfo={NSURL=PlugIns/ --
file:///Volumes/FakeTest/FakeApp.app/Contents/, NSFilePath=/Volumes/FakeTest/FakeApp.app/Contents/PlugIns,
NSUnderlyingError=0x7fc1edc2d550 {Error Domain=NSPOSIXErrorDomain Code=2 "No such file or directory"}}

Filtered by process name "lsd",

message "Non-fatal error

enumerating", and time just

before (null) was recorded

Just before (null) is

recorded (within about

0.1 seconds?)

application path

Investigating Unified Logs (9/13)

◦Program Execution History (5)
▪ Unsigned programs allowed to run by Gatekeeper

▪ It also logs the mounting of unsigned DMGs.

▪ Logged only on first run.

▪ macOS 10.15 - 12.0.1

49

% log show --info --debug --predicate 'category == "gk" and eventMessage BEGINSWITH "temporarySigning"'
Filtering the log data using "category == "gk" AND composedMessage BEGINSWITH "temporarySigning""
Timestamp Thread Type Activity PID TTL
2021-08-10 16:41:11.730226+0900 0x1dc9 Default 0x0 212 0 syspolicyd: (Security)
[com.apple.securityd:gk] temporarySigning type=3 matchFlags=0x0 path=/Users/macforensics/Downloads/FakeTest2-bash.dmg
2021-08-10 16:41:26.286794+0900 0x206c Default 0x0 212 0 syspolicyd: (Security)
[com.apple.securityd:gk] temporarySigning type=1 matchFlags=0x0 path=/Volumes/FakeTest2-bash/FakeApp.app/Contents/MacOS/FakeApp

Programs with execute

permission or mounted DMGs

Investigating Unified Logs (10/13)

◦Program Execution History (6)
▪ adhoc signed program

▪ macOS 10.15 - 12.0.1

50

% log show --predicate '(process == "kernel" and eventMessage beginswith "AMFI: " and eventMessage contains " adhoc ") or (process ==
"amfid" and eventMessage contains "signature")'
Filtering the log data using "(process == "kernel" AND composedMessage BEGINSWITH "AMFI: " AND composedMessage CONTAINS " adhoc ") OR
(process == "amfid" AND composedMessage CONTAINS "signature")"
Skipping info and debug messages, pass --info and/or --debug to include.
Timestamp Thread Type Activity PID TTL
2022-01-19 16:06:09.001258+0900 0x3753 Default 0x0 0 0 kernel: (AppleMobileFileIntegrity) AMFI:
'/Users/macforensics/Downloads/SysJoker/types-config.ts' is adhoc signed.
2022-01-19 16:06:09.002729+0900 0x1c8c Default 0x0 215 0 amfid:
/Users/macforensics/Downloads/SysJoker/types-config.ts signature not valid: -67050

The executed program has

an adhoc signature.

The executed program has

an invalid signature.

Investigating Unified Logs (11/13)

◦Program Execution History (7)
▪ Deny execution by security policy

▪ macOS 10.15

▪ macOS 11.0.1 - 12.0.1

51

% log show --predicate 'eventMessage contains "Security policy would not allow process"'
Filtering the log data using "composedMessage CONTAINS "Security policy would not allow process""
Skipping info and debug messages, pass --info and/or --debug to include.
Timestamp Thread Type Activity PID TTL
2022-01-12 02:35:12.569186+0900 0xa980 Default 0x0 0 0 kernel: (AppleSystemPolicy) Security policy
would not allow process: 822, /Users/macforensics/Downloads/floss

% log show --info --debug --predicate 'eventMessage contains "Security policy would not allow process"'
Filtering the log data using "composedMessage CONTAINS "Security policy would not allow process""
Timestamp Thread Type Activity PID TTL
2021-08-20 17:26:24.667681+0900 0x1b6ba Default 0x0 0 0 kernel: (AppleSystemPolicy) ASP: Security
policy would not allow process: 2954, /Users/macforensics/Downloads/floss

You can search using the same criteria

as macOS 10.15, but the message

formatting will be slightly different.

Program refused to run

Message contains "Security policy

would not allow process

Added since macOS 11.

Investigating Unified Logs (12/13)

◦Volume Mount (1)
▪ macOS 10.15 - 12.0.1

▪ HFS+

52

% log show --info -debug --predicate 'process == "kernel" AND (eventMessage CONTAINS[cd] "mounted" OR eventMessage CONTAINS[cd]
"unmount")'
Filtering the log data using "process == "kernel" AND (composedMessage CONTAINS[cd] "mounted" OR composedMessage CONTAINS[cd]
"unmount")"
Timestamp Thread Type Activity PID TTL
2022-01-08 01:06:05.705926+0900 0x5d2a6 Default 0x0 0 0 kernel: (HFS) hfs: mounted Script Debugger
8.0 on device disk4s2
2022-01-08 01:06:12.082076+0900 0x5d4e9 Default 0x0 0 0 kernel: (HFS) hfs: unmount initiated on
Script Debugger 8.0 on device disk4s2

file system

Volume name
unmount

mounted

The message contains "mounted"

or "unmount".

Investigating Unified Logs (13/13)

◦Volume Mount (2)
▪ macOS 10.15 - 12.0.1

▪ APFS (same filtering conditions as HFS+)

53

% log show --info -debug --predicate 'process == "kernel" AND (eventMessage CONTAINS[cd] "mounted" OR eventMessage CONTAINS[cd]
"unmount")'
Filtering the log data using "process == "kernel" AND (composedMessage CONTAINS[cd] "mounted" OR composedMessage CONTAINS[cd]
"unmount")"
Timestamp Thread Type Activity PID TTL
2022-01-08 01:04:48.911752+0900 0x5cfc7 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_unmount:2441:
disk1: unmounting volume 'com.apple.TimeMachine.2022-01-08-000409.local'
2022-01-08 01:04:48.911778+0900 0x5cfc7 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_unmount:2733:
snapshot deletion completed on the livefs
2022-01-08 01:04:48.911782+0900 0x5cfc7 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_unmount:2798:
nx_num_vols_mounted is 5
2022-01-08 01:04:48.911788+0900 0x5cfc7 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_unmount:2807: all
done. going home. (numMountedAPFSVolumes 44)
2022-01-08 01:07:39.919784+0900 0x5d869 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_mount:2234:
disk5s1: mounted volume: FakeTest2-bash
2022-01-08 01:07:45.865955+0900 0x5d9f4 Default 0x0 0 0 kernel: (apfs) apfs_vfsop_unmount:2441:
disk5: unmounting volume 'FakeTest2-bash'

file system

Local snapshots can

be ignored.

Mount or unmount Volume name

Implementation of ma2tl

54

3

ma2tl implementation policy (1/2)

◦mac_apt to timeline → ma2tl

◦ Support for macOS 10.15 or later

◦Automate the verification procedure for each of the
activities mentioned above.
▪ If the analysis result has timestamps, create events from the main

data.
▸mac_apt.db : SpotlightShortcuts

▪ If the analysis result does not have timestamps, create events by
associating it with a table of relevance.
▸mac_apt.db : AutoStart + APFS_Volumes_xxxx.db
▸mac_apt.db : Safari + Quarantine

▪ Filtering UnifiedLogs.db to extract necessary information from
messages

55

ma2tl implementation policy (2/2)

◦ Implement analysis plugins for each type of activity.
▪ Activities may be recorded across multiple analysis results, and

information needs to be integrated to be output as a timeline.
▪ If you need a new activity, just add a new plugin

◦Replace Unified Logs event messages with content
whose meaning is easy to understand.

◦ Specify the timeline time range manually.
▪ I don't want a super timeline, but a minimum timeline that can be

used as a starting point for investigation.
▪ Specify the range of dates and times that the forensic analysts

are interested in.

56

Configuration of ma2tl

57

⚙ma2tl

[🔌Plugins].

🚀Program Execution

🤿Persistence

🔽File Download

🗻Volume Mount

📜Analysis results

of mac_apt

📰ma2tl result
Invoke Output

Read

SQLite

XLSX

TSV

mac_apt.db

UnifiedLogs.db

APFS_Volumes_xxxx.db

Plugin implementation example: File download

58

1) Configure the information

required for the file

download events from the

Safari and Quarantine tables

in mac_apt.db.
2) Extract the data.

4) Add to timeline.

3) Determine the duplication.

Plugin implementation example: Volume mount

59

1) Filter the logs of

volume mounts.

2) Extracting volume name

from messages using

regular expressions

Regular expressions of

the message when the

volume is mounted

Volume names to ignore

Execution example

60

% python ./ma2tl.py -i ~/Documents/test -o ../ma2tl_output/test -s '2022-01-13 11:00:00' -e '2022-
01-13 11:59:59' ALL
Output path: /Users/macforensics/Documents/GitHub/ma2tl_output/test
MA2TL-INFO-Command line: ./ma2tl.py -i /Users/macforensics/Documents/test -o ../ma2tl_output/test -s
2022-01-13 11:00:00 -e 2022-01-13 11:59:59 ALL
MA2TL-INFO-Input path : /Users/macforensics/Documents/GitHub/forked/mac_apt_out/test
MA2TL-INFO---
MA2TL-INFO-Running plugin FILE_DOWNLOAD
MA2TL.PLUGINS.FILE_DOWNLOAD-INFO-Detected 1 events.
MA2TL-INFO---
MA2TL-INFO-Running plugin PERSISTENCE
MA2TL.PLUGINS.PERSISTENCE-INFO-Detected 8 events.
MA2TL-INFO---
MA2TL-INFO-Running plugin PROG_EXEC
MA2TL.PLUGINS.PROG_EXEC-INFO-Detected 2 events.
MA2TL-INFO---
MA2TL-INFO-Running plugin VOLUME_MOUNT
MA2TL.PLUGINS.VOLUME_MOUNT-INFO-Detected 2 events.

The path where the results of

mac_apt analysis are stored.

Output destination

for ma2tl

Time range of the timeline

to be generated

Plugins to use

ALL: All plugins

Plugin output

Example of analysis results

◦Timeline of Script Debugger downloaded,
installed, and run on macOS 11.5.2.

61

Timestamp (user-specified time zone)

Default: system local

Activity Type Activity Description Plugin nameTimestamp (UTC)

Launch Safari

Download a DMG

Volume mount

Launch System Preferences

from Script Debugger

Since it is macOS 11, the

Script Debugger first-

time startup artifacts are

not left behind.

ma2tl demo

62

ma2tl demo scenario

63

💻 Victim
macOS 10.15.5

😈 Attacker's server
⚙

2) Run the downloader.

🚀
4) Execute the malware

and set persistence.

👾

1) Download a malware

downloader disguised as a tool.

👹

3) Download a malware.

ma2tl demo timeline

64

1) 👾

2) ⚙

4)🚀

3)👹The malware was downloaded using curl, so it

is not included in the timeline generated by ma2tl.

The path of the autorun program

is not a standard folder.

adhoc signed

Future work

65

4

Future work

◦ Support for more mac_apt analysis results
▪ Analysis results with timestamp
▪ Analysis results showing timestamps in combination with

APFS_Volumes_xxxx.db

◦Ongoing investigation of Unified Logs
▪ Application Execution
▪ Program refused to be executed by the system
▪ exFAT, NTFS, SMB volume mount

◦Optimize the timeline to be generated
▪ Eliminate duplicate events
▪ Expand the scope of events to include cautionary messages.

◦Maintenance
▪ Will newer versions of macOS still record log messages that ma2tl can

recognize?

66

Summary

67

5

Summary

◦Shared how to create a timeline from
mac_apt analysis results and Unified Logs.

◦ Introduced the implementation and
function of ma2tl.
▪ Automatic generation of timeline from mac_apt

analysis results and Unified Logs

▪ More activities can be supported by plugins.

◦ma2tl GitHub repository
▪ https://github.com/mnrkbys/ma2tl

68

https://github.com/mnrkbys/ma2tl

69

Any questions?
Thank you for listening!

CREDITS for this presentation template and Icons

Special thanks to all the people who made and

released these awesome resources for free:

◦ Presentation template by SlidesCarnival

70

http://www.slidescarnival.com/

